DRAFT
(Please do not quote.)
CryptoToolJ: An Extensible Cryptology Tool for
Historical Ciphers

Ralph Morelli
Computer Science Department
Trinity College
Hartford, CT 06106
ralph.morelli@trincoll.edu

March 22, 2004

Abstract

This paper describes CryptoToolJ (Cryptology Tool — Java), an ex-
tensible Java-based software program for implementing and analyzing
historical ciphers. CryptoToolJ is designed to support computer-based
research and teaching in historical cryptography. It contains default im-
plementations of a number of historical cipher engines. It also incorporates
several easy-to-use cryptanalysis programs, thus providing an integrated
software platform for historical cryptologists. What distinguishes Crypto-
ToolJ from similar tools is its generality and extensibility. Because of its
open, object-oriented design, new cipher engines and programmer-defined
analyzers can be easily incorporated into the program. The software, in-
cluding source code and documentation, is available for free download. It
is hoped that as others utilize this tool, they will contribute to its further
development.

1 Introduction

CryptoToolJ is a Java program for the creation and cryptanalysis of historical
ciphers. It can be used to encrypt, decrypt, and cryptanalyze messages written
with any of its default cipher engines — Caesar, simple substitution, Vigenere,
transposition, Playfair, polysubstitution, and others. Moreover, because of its
open and extensible design, it can be used by programmers to create new cipher
engines and cryptanalyzers, which can then be easily incorporated into the tool.
The tool, as well as its underlying cryptography library, documentation, and
source code, is available for free download.

1.1 General Features

CryptoToolJ has the following features.

e It is based on HcryptoJ, an extensible Java library that supports the
creation of historical cipher engines. HcryptoJ is modeled on the Java
Cryptography Extension (JCE), Sun Microsystem’s Java library for cryp-
tography ([4]). However, HeryptoJ was designed specifically for use with
historical ciphers. (For more on Heryptold, see [3]).

e It has an easy-to-use, menu-driven, graphical interface. An applet ver-
sion of the tool is available at [1], which also contains links to the fully-
documented downloadable version.

e It can be used to encrypt and decrypt messages written in Greek, Hebrew,
Katakana, and other non-English character sets. This feature derives from
its use of Java’s 16-bit Unicode character set.

e It has an extensible interface, that allows plugin cipher engines and plu-
gin analyzers to be incorporated into the tool as they become available.
As CryptoTooll] is developed further, its website contains a repository of
plugin resources.

e It is written in Java, so it will run without recompilation on any hardware
platform that supports the freely available Java Runtime Environment, in-
cluding Windows, Macintosh, Linux, and Unix. Its object-oriented design
makes it easy to extend the tool.

2 Using CryptoToolJ To Encrypt/Decrypt Mes-
sages

Figure 1 shows CryptoToolJ’s basic user interface. It presents an easy-to-use
platform for encrypting and decrypting messages in a variety cipher systems.
The messages themselves can be stored in files or simply typed into the tool’s
text window. There are two steps required for encrypting or decrypting;:

1. Select a cipher engine.

2. Create an appropriate cryptographic key for that cipher engine.

Because the key’s format depends on the cipher engine, CryptoToolJ provides
a context-dependent dialogue window to guide the user:

Note that in addition to specifying the data that make up a key — e.g., the
keyword, or Caesar shift, or an alphabet permutation — the key dialogue also
prompts the user to specify both the plaintext and ciphertext alphabets. In
CryptoToolJ, an alphabet is a set of Unicode character ranges. The Unicode
character set is a 16-bit code that incorporates most international character

File Edit Window Analysis Helpl

Caesar {(Default) = | Set Key| éiim‘wgz‘é:| fracrypt |

0 |

[T
Output Text Area

|

Figure 1: CryptoToolJ’s basic interface.

Enter key:

Plaintext Alphabet: Jdaz JAZ 109

_printable ASCll _dall Ascll I” Other: Specify

IEEG: Range.ai+Range.kz+UnicodeBlock.GREEK

Cryptotext Alphabet: daz _1AZ o9

_printable ASCH JdAllASCll [T Other: Specify

IIEG: Range.ai+Range.kz+UnicodeBlock.GREEK

ﬂ Cancel

Figure 2: CryptoToolJ’s key dialog window.

sets ([2]). The CryptoToolJ user can specify traditional character ranges, such
as 'a’ to 'z’ or can create customized ranges, such as ’a’ to 'i’ and 'k’ to 'z,
including ranges in international character sets such as Greek or Katakana or
Hebrew.

Once the key has been specified, CryptoToolJ will enable the Encrypt and
Decrypt buttons. Text that has been encrypted can be cut and pasted into
other documents or saved to a file.

2.1 Default and Plugin Cipher Engines

In its present configuration, CryptoToolJ contains the cipher engines listed in
Table 1. The only difference between default and plugin ciphers is in the way

they are loaded into the program. As described below, cipher engines that are
placed in a special plugin directory are loaded into the program at runtime.

Cipher Engines
Affine Caesar Substitution
Playfair Polysubstitution Vigenere
Transposition Autoclave (plugin) NullCipher (plugin)

Table 1: Cipher engines in the current version of CryptoToolJ.

3 Using CryptoToolJ for Cryptanalysis

Table 2 provides a list of cryptanalysis tools that are included in the current
version of CryptoToolJ. These tools may be applied to any text that is loaded
into the tool’s input or output text areas. Most of the tools perform an anal-
ysis and report their results in a separate window. For example, the Caesar
Analyzer uses the Chi-square test to identify the probable shift of a Caesar-
encrypted message and then attempts to decrypt the message using that shift.
The Vigenere and substitution analyzers work the same way. However, some
of the tools are more interactive. For example, the Histogram tool displays the
messages frequency histogram and allows the user to interactively query about
the frequency of particular characters.

Cryptanalysis Tools
Frequency Analyzer Histogram Tool Index of Coincidence
Caesar Analyzer Affine Analyzer Substitution Analyzer
Vigenere Analyzer Pattern Word Searcher Null Analyzer (plugin)

Table 2: Cryptanalysis tools in CryptoToollJ.

CryptoToolJ’s analyzer interface has also been designed to be extensible.
Thus it is very easy to develop one’s own cryptanalysis tools and add them to
the program as plugins. To illustrate how this is done, the program comes with
a couple of simple examples of plugin analyzers.

4 Extending CryptoToolJ

As pointed out above, CryptoToolJ is designed to grow in functionality as new
cipher engines and cryptology resources become available. Of course, the code
for these new resources must follow certain design specifications in order to be
incorporated into CryptoToolJ. But the interface is quite simple and accessible.
This section provides a brief description of the design features that contribute
to the CryptoToolJ’s extensibility.

4.1 Incorporating a New Cipher Engine

New cipher engines can be incorporated into CryptoToolJ via its plugin inter-
face. When CryptoToolJ is installed, two directories are created in its home
directory. The plugins directory is the repository for cipher engines and their
corresponding keys, and the providers directory is the repository for searchable
indices that tell the program what cipher engines are available. When the pro-
gram is started, it searches these directories, incorporating any cipher engines
it finds into its menu system.

The provider interface used in this design is based on the Java Cryptography
Extension (JCE) ([4]). This feature enables software developers to provide their
own implementations of cipher systems. For example, even though CryptoToolJ
includes an implementation of a Caesar engine as part of its default provider,
another developer can provide a different implementation of Caesar cipher under
a different provider name. Cipher engines are identified both by their name —
e.g., Caesar — and their provider’s name — e.g., default.

Cipher engines incorporated into CryptoToolJ through the plugin interface,
all have the provider name plugin. The current version of CryptoToolJ contains
a single plugin provider, TestProvider, whose Java code is as follows:

package providers;
import hcrypto.provider.*;
public class TestProvider extends Provider {

public TestProvider(String name) {
this.name = name;
put("Autoclave", "plugins.AutoclaveEngine", "plugins.AutoclaveKey");
¥
X

As this code shows, this provider creates an implementation of the Autoclave
cipher. The code associates the name of the cipher with the names of the Java
classes that implement it: plugins. AutoclaveEngine and plugins. AutoclaveKey.
When these two classes are added to the plugins directory, CryptoToolJ will
incorporate the Autoclave plugin cipher into its menu system.

Of course, in order for the program to utilize these classes, they must follow
the design specifications laid out in HeryptodJ. In brief, a cipher engine must be
implemented as a subclass of herypto.cipher. BlockCipher and it must have a key
that is a subclass of herypto.cipher. HistoricalKey. (For more on this, see [3].)

4.2 Incorporating a New Analyzer

Incorporating a new analyzer resource into CryptoToolJ works in a similar fash-
ion. The Java classes (code) that implement the analyzer must be placed to the
analyzers subdirectory. When CryptoToolJ is started it searches this directory
and adds analyzer plugins to its Analysis menu. In order for the program to
be able to run the analyzer, the analyzer must provide an implementation of

the herypto.analyzer. Analyzer interface, which contains the necessary details on
how the two programs will communicate with each other.

5 Related Work

There are numerous cryptography and cryptanalysis tools available. The fol-
lowing list provides a brief summary:

e Cipher Clerk — a Java applet that contains implementations of a large col-
lection of historical ciphers (http://members.magnet.at/wilhelm.m.plotz/Bin/CipherClerk.html).

e Secret Code Breaker — Javascript implementations of Caesar and other
substitution ciphers (http://codebreaker.dids.com).

e Advanced Cryptography Tool — A cryptographic tool that uses strong
encryption (http://maga.di.unito.it/security/resources/ACT /act.html).

e Cypher — A cryptologic tool for historical ciphers that was developed
as a software engineering project at the University of North Carolina
(http://www.cs.unc.edu/ stotts/COMP145/homes/crypt/).

e The Cryptology Matrix — A collection of resources, including CryptAid,
for creating and analyzing historical ciphers from New Mexico State Uni-
versity (http://www.math.nmsu.edu/crypto/public_html/).

e Cryptlib — A security toolkit that provides strong encryption and authen-
tication services (http://www.cs.auckland.ac.nz/ pgut001/cryptlib/).

e Pretty Good Privacy (PGP) — A security toolkit that provides strong en-
cryption and authentication services (http://web.mit.edu/network /pgp.html).

Most of these are commerical products that provide strong encryption and au-
thentication services. These are not suited at all for historical cryptography.

Among those that are specifically designed for historical ciphers (CryptAid,
Cypher), none provides the extensible, integrated platform available in Crypto-
ToolJ. And none appear to be designed to support an ongoing research program
in computer-based historical cryptography.

6 Plans for the Future

CryptoTooll is a very much a work in progress. We have used CryptoToolJ as
the basis for a project in a software engineering course ([5]). At Trinity College
it will continue to serve as a computational platform for research and teaching
in cryptography and cryptology. We are currently working on a number of
new cipher engines, including an implementation of the Enigma machine, and
a number of new analyzers, including a genetic analysis program.

The current version of CryptoToolJ (v1.3) demonstrates the feasibility of
providing an integrated and extensible software platform to support the creation
and analysis of historical ciphers. The system’s overall design, particularly its
plugin interface, will allow it to grow into a more useful cryptology tool as new
cipher engines and analyzers are developed.

Future releases of the tool will incorporate new resources. In between major
releases, the CryptoToolJ website will serve as a repository for new resources as
they become available. It is our hope that amateur cryptographers, researchers
and students will use CryptoToolJ and contribute to its extension, thereby mak-
ing it a generally useful resource in the ongoing study of cryptology.

7 References

1. http://starbase.trincoll.edu/ crypto/heryptoj/
2. http://www.unicode.org/

3. R. Morelli and R. Walde. HcryptoJ: A Java Toolkit for Creating and
Analyzing Historical Ciphers. Unpublished manuscript, 2002.

4. Java Cryptography Extension. URL: http://java.sun.com/products/jce/.

5. Ralph Morelli, Ralph Walde, and Gregg Marcuccio. A Java API for His-
torical Ciphers. Proceedings of the Thirty Second SIGCSE Technical Sym-
posium on Computer Science Education, pp. 307-311, 2001.

