DRAFT
(Please do not quote.)
HeryptoJ: A Java Platform for Education and
Research in Historical Cryptology

Ralph Morelli
Computer Science Department
Trinity College
Hartford, CT 06106
ralph.morelli@trincoll.edu

March 22, 2004

Abstract

This paper describes HeryptoJ (Historical cryptology in Java), a Java-
based programming library for implementing and analyzing historical ci-
phers. Heryptod is designed to support research and teaching in historical
cryptography and computer science. It is suitable for use by novice and in-
termediate level Java programmers as well as by nonprogrammers and has
been used in a variety of undergraduate research and teaching projects.
HcryptolJ is general enough to implement any symmetric key cipher sys-
tem that translates plaintext strings into ciphertext strings and vice versa.
This paper provides a brief overview of the HeryptoJ project and shows
how it is being used to support undergraduate teaching and research. The
HcryptodJ library, including source code and documentation, is available
for free download.

1 Introduction

HeryptoJ (Historical cryptology in Java) is a Java application programming in-
terface (API) for implementing and analyzing historical ciphers. An API is a
library or an organized collection of classes and methods that is used to support
programming within a certain domain. The domain in this case is historical
cryptology, by which we mean primarily encryption, decryption, and cryptanal-
ysis of ciphers that were used up through World War II. Such ciphers typically
use a shared (symmetric) key together with manual or mechanical calculations
to encode a block of alphabet symbols.

The primary goal of HeryptoJ is to serve as an easy-to-use programming
platform for the research and study of historical ciphers and cryptology. At the
same time HcryptoJ serves as an excellent platform for student programming
and research projects at both the introductory and advanced levels. For exam-
ple, with HeryptoJ it is possible for a beginning programmer to implement a
full-fledged cipher system by implementing only a handful of methods. HeryptoJ
contains a number of built-in utility classes and methods, such as text analysis
classes and file I/O methods, which make it a suitable platform for program-
ming assignments in Java-based CS1 and CS2 courses. Because of its extensible
object-oriented design, the Heryptod system itself is a suitable object of study
for courses in data structures and software engineering. Indeed, the first version
of HeryptoJ was developed in part as a group project in a software engineering
class [5].

Hcryptod also serves as a good platform for supporting various undergrad-
uate research projects. These projects range from largely experimental work
— e.g., designing and running tests for a genetic algorithm that analyzes cryp-
tograms — to program design and implementation projects — e.g., researching
and implementing a program to implement a particular cipher system — to arti-
ficial intelligence projects — e.g., designing and implementing an expert system
or genetic algorithm to analyze ciphers. All of these examples are actual student
projects that have been or are being conducted with Heryptod.

What makes HeryptodJ suitable for a wide range of educational uses is its
standardized and extensible programming interface. Heryptold’s object-oriented
design is closely modeled on that of the Java Cryptography Extension (JCE), a
Java library that provides a standardized programming framework for encryp-
tion algorithms ([2],[4]). As befits our purpose of supporting undergraduate
education and research, HeryptolJ’s design is simpler than the JCE.

1.1 HcryptoJ General Features

HcryptoJ provides an extensible platform for implementing and analyzing the
full range of historical ciphers:

e It provides a general framework for implementing cipher systems. It in-
cludes implementations of the cipher systems shown in Table 1. These
can be studied as examples of how to use the library. Once the Heryptol
framework is understood, beginning and intermediate programmers can
easily implement their own cipher systems.

Cipher Engines
Affine Caesar Substitution
Playfair Polysubstitution Vigenere
Transposition Autoclave (plugin) NullCipher (plugin)

Table 1: Built-in cipher engines in the current version of Heryptod.

e It provides a general framework for implementing various type of ana-
lyzers — that is, programs that perform some type of cryptanalysis of an
encrypted message. Table 2 provides an inventory of analyzers that have
already been implemented and are provided with the library.

Cryptanalysis Tools
Frequency Analyzer Histogram Tool Index of Coincidence
Caesar Analyzer Affine Analyzer Substitution Analyzer
Vigenere Analyzer ~ Null Analyzer (plugin) Pattern Word Searcher

Table 2: Built-in analyzers in Heryptod.

e It is compatible with both command line and graphical (windows-based)
user interfaces. Examples of both types of programs are provided with the
library. Some of the programs, such as CryptoToolJ can be used as is to
perform cryptographic and cryptanalytic tasks using built-in classes and
methods.

e It employs an extensible, object-oriented design that makes it relatively
easy to build encryption and cryptanalysis applications. New encryption
and analysis algorithms can be created by extending existing classes and
can be easily plugged into the existing applications, such as CryptoToolJ.

e [t is written in Java so it can be used on just about any hardware and
software platform. Java programs can run without re-compilation on any
system that supports the Java Runtime Environment (JRE), which is
supported by Windows, Linux, Macintosh, Unix and most major operating
systems.

e It supports the full range of Unicode alphabets (character sets), which
allows it to handle messages written in Greek, Hebrew, Katakana, and
other character sets.

e It is available, along with its source code and documentation, for free
download at:

http://starbase.trincoll.edu/ " crypto

In the remainder of this paper we describe Heryptod’s overall design and
functionality and provide examples of how it has been used in undergraduate
teaching and research.

2 Cryptography Basics

Before describing HeryptoJ it will be helpful to provide some background on
cipher algorithms. There are a number of good references available on historical
cryptography, including Kahn [3] and Beker and Piper [1].

Cryptography is the art and science of designing systems for transmitting
secret messages. The message to be kept secret is called the plaintext and the
process of hiding its meaning is called encryption (or enciphering). The secret
message is called the ciphertext and the process of translating the ciphertext to
plaintext is called decryption (or deciphering).

A cipher is an algorithm for translating plaintext to ciphertext and vice
versa. Normally the translation will depend on some kind of cryptographic key,
which is used by the algorithm to encrypt or decrypt the message. There are
a wide range of historical ciphers, but generally speaking they fall into two
distinct groups: substitution ciphers and transposition ciphers. For example, a
very simple substitution cipher is the Caesar cipher, in which each of the letters
a through z is represented by the letter which occurs three places after it in
the alphabet, with the last three letters, x through z, wrapping around to the
beginning of the alphabet. So for the standard plaintext alphabet, we get the
following ciphertext alphabet:

Plaintext: abcdefghijklmno
Ciphertext: DEFGHI JKLMNOPQR
To encrypt the message “caesar was a roman” we simply replace each plain-
text character with the corresponding ciphertext character: FDHVDU ZDV D
URPDQ. Decryption would perform the substitution in the opposite direction.

A transposition cipher rearranges the letters in the original message. For
example, in one type of transposition cipher, the transposition key 43210 de-
scribes how to rearrange the letters in a 5-character block in which the character
positions are numbered 0 through 4. Using this key a transposition cipher would
encrypt “caesa rwasa roman” into ASEAC ASAWR NAMOR.

Cryptanalysis is the development and study of techniques used to break
ciphers. (Generally cryptology refers to the combined fields of cryptography and
cryptanalysis.) For example, a cryptanalysis of a Caesar cipher would be an
attempt to decipher the message FDHVDU ZDV D URPDQ without knowing
its key. If it is known that the message was created with a Caesar cipher, one
simple analysis would be to try each of the 25 possible shifts until the message is
translated. If the type of cipher is not known, the cryptanalysis might proceed
by counting the frequencies of each of the letters in the message and comparing
those with the frequencies of the English alphabet. In this example there aren’t
enough letters in the message for this frequency analysis to work, but with a
long enough message, a simple substitution cipher can easily be broken by this
type of analysis.

3 The HcryptoJ Architecture

This section describes the HeryptoJ architecture and provides an example of
how it can be used to create a cipher system. We begin with a brief overview
of the main classes and methods that make up Hertypold.

3.1 Engines and Keys

In Heryptod, every cipher system contains two basic components, a cipher en-
gine, which performs the encryption and decryption algorithms, and a crypto-
graphic key, which contains the secret data used by the engine.

Figure 1 shows the primary classes and methods in the HeryptoJ architec-
ture. The classes are grouped into packages, which are represented by the dotted
rectangles. All of the classes in the library are subclasses of the java.lang. Object
class, as indicated by the closed-headed arrows. The basic design utilized by
Hcryptod is that a Cipher is an object that uses a specific CipherEngine to en-
crypt and decrypt Strings of text. The HeryptoJ architecture can be extended
with minimal effort by incorporating new cipher engines — such as CaesarEngine
and TranspositionEngine — into this hierarchy.

java.lang.Object hcrypto.provider
P T T Provider
hcrypto.cipher §

HistoricalKey | DefaultProvider |

+init(in keyspec : String)

CipherEngine <

BlockCipher

+encode(in block : String) : String

+decode(in block : String) : String — -
4 +init(in keyspec : String)

e —
Gioher {[renspositonkey |

| 2+init(in key : HistoricalKey)
+encrypt(in msg : String) : String
+decrypt(in msg : String) : String

I'\IphabetFactory I
|| Alphabet |

Figure 1: The main classes and methods used for encryption and decryption in
the Heryptold library.

L

hcrypto.engines

esssscesey

CaesarKey

iTranspositionEngine |

CeasarEngine

+encode(in block : String) : String
+decode(in block : String) : String

As Figure 1 shows, a key is any subclass of the built-in HistoricalKey
class. Similarly, a cipher engine is a subclass of the built-in BlockCipher class.
A cipher engine must contain implementations of the following three methods
(whose names are abbreviated in the figure):

engineInit (HistoricalKey key)

engineEncode(String s): String
engineDecode(String s): String

The first method describes how to initialize the cipher engine given an HistoricalKey
of the appropriate type. The encode and decode methods describe how to trans-

late each block of the message, where a block can be as little as 1 character of
text. For example, for a Caesar cipher, the engineEncode () method must de-
scribe how to shift each character by a given amount. So, assuming the Caesar

shift is 3, engineEncode ("a") would return ”"d”. The engineDecode () method
must describe the converse operation.

3.2 Creating a Cipher System

The following code shows the engineEncode () method for HeryptolJ’s default
Caesar cipher:

public String engineEncode(String s) throws Exception {
if (blocksize != 1)
throw new Exception("Invalid blocksize for Caesar cipher " + blocksize);
char ch = s.charAt(0);
if (alphabet.isInAlphabet(ch)) {
return "" + encodeShift(ch, shift);
}
else
return s;

}

This code first checks that the blocksize was set correctly when the engine
was initialized. The encodeShift () and the alphabet.isInAlphabet () meth-
ods used here are built-in HeryptoJ methods. If ch is in the alphabet, the
encodeShift () method will replace it with the character shift characters to its
right.

For this example, a similar amount of coding would be required for the
engineDecode () method. Because of HeryptoJ’s object-oriented design, engineEncode ()
and engineDecode () methods are called automatically by the Cipher.encrypt ()
and Cipher.decrypt () methods (Figure 1). These are the methods that would
be called by an application program to encrypt or decrypt a cipher. An example
is provided below. Thus, because of its object-oriented design, Heryptod reduces
the encryption and decryption tasks to the coding of two methods, encode() and
decode().

The engineInit () method for Caesar cipher is just as easy to code. Its task
is basically to get information that is encapsulated in the cryptographic key and
store that information in the cipher engine. In this case of the Caesar cipher,
this information includes the shift used by the Caesar engine, the alphabets used
for both encryption and decryption, and the blocksize assumed by the cipher.
Each of these items of data are stored in the CaesarKey:

protected void enginelInit(HistoricalKey hKey) throws Exception {

if (!(hKey instanceof CaesarKey))
throw new Exception("InvalidKey: Caesar requires CaesarKey");
key = (CaesarKey) hKey;
alphabet = key.getAlphabet();
cipherAlphabet = key.getCTAlphabet();
shift = key.getShift();
this.blocksize = key.getBlocksize();
}

The shift, blocksize, and alphabets set up in this method are used in the
engineEncode () and engineDecode () methods.

Thus, creating one’s own cipher engine with HeryptodJ is a matter of writing
three methods. That is, it is not necessary to write code for the many other
methods involved in the encryption process. Of course, not every cipher engine
will have methods that are as easy to code as Caesar cipher. But HeryptoJ’s ar-
chitecture standardizes what must be done: the engineInit () method delivers
key data to the cipher engine and the engineEncode() and engineDecode ()
methods describe exactly how each character is translated.

Now let’s look at how CaesarKey fits into this scheme. As Figure 1 shows, a
valid key for, say, a Caesar cipher, must be defined as a subclass of HistoricalKey.
It must contain a valid implementation of the init () method, which is respon-
sible for translating a key specification into data that can be used by the cipher
engine. Here’s an example of CaesarKey.init():

public void init(String keyspec) throws Exception {
initKey (keyspec) ;
this.blocksize = 1;
this.shift = Integer.parselnt(keyword) ;
if (shift < 0)
throw new Exception ("Invalid shift value for Caesar cipher: " + shift);

}

A keyspec for a Caesar cipher takes the form 3/az. The data preceding the
slash is called the keyword and the data following the slash is called the alphabet
descriptor. As in the previous methods, much of the work here is done by built-
in methods. Thus the initKey () method will separate the keyword from the
alphabet descriptor and will directly create the alphabet that will be used by
the cipher engine. So the only real work done here is to convert the shift from
a string into an integer because our Caesar engine expects the shift to be a
positive integer.

As this example shows, using the HeryptoJ platform, the process of design-
ing of an encryption engine can focus primarily on the algorithms needed to
perform encryption and decryption. One needn’t worry about the ancillary de-
tails of performing I/0, breaking the ciphertext into blocks, padding the blocks
with extra characters, and the several other tasks required to encrypt and de-
crypt a message. Similarly, the amount of coding required to create a complete
cipher system is fairly minimal, requiring just the coding of the three methods

discussed above. Because of these features, the HeryptoJ architecture is well-
suited for serving as a platform for undergraduate programming assignments
and research projects. (An appendix contains the complete code for the default
Caesar cipher.)

3.3 Using a Programmer-Defined Cipher System

This section describes how a programmer-defined cipher system would be incor-
porated into an application program. The following code segment is a complete
application program that uses Caesar cipher to encrypt and decrypt a string:

import hcrypto.cipher.x*; // Import library classes and methods
import hcrypto.provider.*;
import hcrypto.engines.*;

public class SimpleTester {
public static void main(String args[]) throws Exception {
Provider.addProvider (new MyProvider("MyName"));
Cipher cipher =
Cipher.getInstance("Caesar", "MyName");
HistoricalKey key =
HistoricalKey.getInstance("Caesar", cipher.getProvider());
key.init("3/AZ");
cipher.init (key) ;
System.out.println(cipher.encrypt ("THIS IS A TEST"));
}
}

The first three statements import the names of the classes and methods from the
Heryptod library. The SimpleTester program begins execution in the main ()
method. The first statement installs a provider that contains necessary infor-
mation about the programmer-defined cipher system:

Provider.addProvider (new MyProvider ("MyName"));

The provider interface, which is modeled on the Java Cryptography Eztension
([4]), contributes to HeryptoJ’s extensibility. A provider is a searchable index
of available ciphers. The main provider class, Provider, contains methods that
add new providers into a program and methods that search for ciphers by name
or by name and provider. Writing a provider class for one’s own cipher is very
simple. Here’s the complete implementation of MyProvider:

package providers;
import hcrypto.provider.x*;
public class MyProvider extends Provider {
public MyProvider(String name) {
this.name = name;
put("Caesar", "plugins.CaesarEngine", "plugins.CaesarKey");

MyProvider simply associates the name of the cipher engine, Caesar, with the
names of the Java classes used to implement its engine (plugins. CaesarEngine)
and its key (plugins. CaesarKey).

After telling the program about the existence of this new cipher, it is now
possible to create an instance of the Caesar cipher:

Cipher cipher =
Cipher.getInstance("Caesar", "MyName");

The two arguments in the Cipher.getInstance() method are the name of
the cipher engine and the name of its provider. The getInstance() method
will search the available providers for an implementation of “Caesar” provided
by “MyName.” Assuming it is found, the program can then move on to the
encryption and decryption steps.

Before a cipher object can be used to encrypt or decrypt messages, it must
be initialized with a key of the appropriate type. That is the purpose of the
next three statements, which create an instance of the key, initialize the key,
and pass the key to the cipher engine:

HistoricalKey key =

HistoricalKey.getInstance("Caesar", cipher.getProvider());
key.init("3/AZ");
cipher.init (key);

The last statement in main() uses the encrypt () method to encrypt a string:
System.out.println(cipher.encrypt ("THIS IS A TEST"));

Once a cipher object has been initialized with an appropriate key, it will use
that key in all subsequent encryptions and decryptions. Thus, given the fact
that in this example Caesar cipher uses a shift of 3, the encryption of “THIS IS
A TEST” would result in “WKLV LV D WHVW.”

3.4 Creating and Using Analyzers

Because cryptanalysis can take many and diverse forms, HeryptodJ provides a
very general programming interface. As shown in Figure 2, an Analyzer is
any class that implements the hcrypto.analyzer.Analyzer interface, which
consists of the following methods:

setup(String msg)
run()
getReport(): String

Any class that implements these methods can be easily incorporated into ap-
plication programs that use the HeryptolJ library. The setup() method takes
the message being analyzed as a parameter and initializes the analyzer. The
run() method performs the analysis. The getReport() method gets the ana-
lyzer’s report, which must be collected into a string. Aside from these minimal

< ¢interfane >

herypio analyzer. Analyzer

+ setupis: Epang |
+ 1uni)

+ getReparti): Shing

D

HistogianTool

===+ setupis: Bhig)
+
+ getReport: 2 hing,

Indem>fZoincidele

ST A setupiE: Bing)
+ 1
+ gethieport(: Ehing

Figure 2: HeryptoJ’s analyzer interface.

requirements, the analyzer can perform any kind processing whatsoever on the
target message.

The following is an example of a very simple plugin analyzer that just returns
the first five characters of the message.

package analyzers; // Analyzer plugins belong to this package
import hcrypto.analyzer.*;

public class TestAnalyzer implements Analyzer {
private String text;
private StringBuffer resultSB = new StringBuffer();

public TestAnalyzer() { }
public void setup(String text) {this.text = text; }
public void run() {
resultSB.append("TestAnalyzer: The fiirst 5 letters are "
+ text.substring(0,5) + "\n");

10

public String getReport() {return resultSB.toString(); }
}

Table 2 provides of list of examples that come with the current version of Heryp-
toJ. HistogramTool is an analyzer that provides a frequency histogram of the
letters contained in the message. IndexOfCoincidence is an analyzer that com-
putes a statistic that is used by cryptanalysts to determine whether a message
was encrypted with a simple or polyalphabetic substitution cipher. CaesarAna-
lyzer is an analyzer that automatically breaks messages encrypted with Caesar
cipher. As these examples show, HeryptoJ’s analyzer interface can serve as a
platform for a wide variety student programming and/or research projects.

4 Using HcryptoJ in Teaching and Research

In this section we provide a functional overview of HeryptoJ and show how it
can be (and has been) used in a variety of undergraduate projects.

4.1 Using Built-in Applications

Table 3 provides a list of Heryptod’s built-in application programs. In addition
to being useful application programs that can be used in a variety of non-
programming projects, they serve as examples of how to design and build an
application using HeryptoJ. These programs can be run without recompilation
on any platform that supports the Java Runtime Environment.

Application Description

TestCipher Encrypts/decrypts text entered on the command line.
FileCipher Encrypts/decrypts files named on the command line.
TestAnalyzer Command-line cryptanalysis tool.

CryptoToolJ Menu-driven cryptology tool.
CryptoAppletJ | Applet version (http://starbase.trincoll.edu/ crypto/).

Table 3: Applications available with Heryptod.

4.2 Encrypting and Decrypting Short Messages

TestClipher is a command-line program that encrypts and decrypts short mes-
sages using any of Hcryptod’s built-in cipher engines. It is mainly useful for
quick testing of new cipher engines as they are being developed. For example,
the following command will encrypt the message “this is a test” using a Caesar
cipher:

java TestCipher Caesar 3/az "this is a test"

11

Note the use of the key specification “3/az” to communicate the Caesar shift
(3) and alphabet (lowercase a to z) to the cipher engine. This command line
will first create a CaesarKey, initializing it with the key specification. It will
then create and initialize a CaesarEngine, which can then be used to encrypt
or decrypt messages using that key. In this case, the program would produce
the following output:

The keyword is: 3, Algorithm=Caesar Provider=Default
this is a test
wklv 1lv d whvw
this is a test

4.3 Encrypting and Decrypting Files

The FileCipher program can be used with any of the built-in cipher engines
to encrypt and decrypt text files. For example, the following command will
Caesar-encrypt filel, an ISO-2022-JP encoded email message that includes a
mixture of ASCII characters and Japanese Katakana characters:

java FileCipher Caesar 3/printable+UnicodeBlock.KATAKANA -e filel file2 IS0-2022-JP

This example also illustrates HeryptoJ’s internationalization capability. In this
command, the complicated looking key specification sets up a Caesar key, with
a shift of 3, that will translate all printable ASCII and all Katakana characters
in the input file.

Both FileCipher and TestCipher can serve as platforms for student pro-
gramming projects. For example, as a senior programming project, a student
developed an implementation of RailFence cipher, a well-known transposition
cipher. (See http://starbase.trincoll.edu/¢rypto/historical/). During develop-
ment of RailFence classes, the TestCipher program was used as follows to test
and debug the algorithms:

java TestCipher RailFence 3/azAZ09 "this is a test"

Successful performance of the cipher in this kind of test confirms both that
the cipher conforms to the appropriate object-oriented design and that it works
correctly. From the student’s perspective the project required mastery of both
algorithm design and object-oriented design.

4.4 Cryptanalyzing Messages

TestAnalyzer is a command-line program that can be used to test a cryptanalysis
program. For example, the following command line runs CryptogramAnalyzer
— a program that tries to break simple substitution cryptograms — on the en-
crypted file, producing an analysis either in text or in a pop-up window:

java TestAnalyzer CryptogramAnalyzer encryptedfile

12

By taking care of the file I/O and other low-level tasks, the TestAnalyzer pro-
gram serves as a useful platform for a variety of text and cipher analysis projects
at the beginning and intermediate level. For example, as long as it is designed as
an implementation of the hcrypto.analyzer.Analyzer interface, any student-
written analyzer can be tested using this program. For example a student is
currently working on an expert system program that will attempt to determine
the type of cipher that was used to create an encrypted message. When fin-
ished, this program will be able to tell whether the message was encrypted with
a transposition or substitution cipher, whether it is a simple or poly-alphabetic
substitution cipher, and so on.

4.5 Using CryptoToolJ

CryptoToolJ is a menu-driven application that integrates HcryptoJ’s built-in
ciphers and analyzers into a easy-to-use cryptology program (Figure 3). It can
be run either as a standalone program or as an online applet, although the applet
version has much-reduced functionality because of Java security restrictions.
CryptoToolJ can be used to encrypt and decrypt messages created either with
its default cipher engines — Caesar, simple substitution, Vigenere, and others — or
with student-written cipher engines that can be incorporated into the program
as plugins. Similarly, it can be used to cryptanalyze messages using either
built-in or student-written analyzers.

B X
File Edit Window Analysis Help |
Caesar {(Default) = | Set Key| fnrrypt | fracrypt |

0 |

[T
Output Text Area —

]

Figure 3: CryptoToolJ is a GUI program that supports encryption, decryption,
and cryptanalysis of various kinds of historical ciphers.

As with the other built-in application programs, CryptoToolJ can be used
as a platform for testing students programs. By providing an easy-to-use inter-
face, the student can focus on the design of the cryptographic and/or analytic
algorithms.

13

4.6 Extending HcryptoJ and CryptoToolJ

One of our long-range goals is to extend HcryptoJ and CryptoToolJ with im-
plementations of all well-known historical ciphers as well as analyzers that at-
tack them. In addition to built-in cipher engines and analyzers, CryptoToolJ’s
functionality can be extended through its plugin interface. Plugin engines and
analyzers (see Tables 1 and 2) that are placed in special plugin directories are
loaded into the program at runtime. Of course, the code for these new resources
must follow the design specifications that were described previously. But the
HcryptodJ interface is quite simple and accessible.

Similary, incorporating a new analyzer resource into CryptoToolJ works in
a similar fashion. The Java classes (code) that implement the analyzer must be
placed in the analyzers subdirectory. When CryptoToolJ is started it searches
this directory and adds analyzer plugins to its Analysis menu. In order for the
program to be able to run the analyzer, the analyzer must provide an implemen-
tation of the herypto.analyzer. Analyzer interface, which contains the necessary
details on how the two programs will communicate with each other.

5 An Accessible and Extensible Research Tool

As the preceding discussion shows, the HeryptolJ library greatly simplifies the
process of creating and using cipher engines and cryptanalyzers. Its usefulness as
a platform for undergraduate teaching and research derives from its extensible,
object-oriented design.

Because the library’s architecture manages most of the ancillary tasks in-
volved in writing a cipher system, the essential programming tasks can be left
to the student. Even novice Java programmers (CS1 students) can make use
of its classes to create their own simple cipher engines and their own applica-
tions. More advanced programmers can make use of its analyzer interface to
create more ambitious ciphers as well as their own cryptanalysis tools. Students
studying software engineering can use the system as an object of study and for
further design work.

Because of its accessibility and extensibility, HeryptoJ can also be useful
to researchers, who wish to create an implementation of a historical cipher or
an analysis program as part of their study, and to students and instructors of
historical cryptology, who can use it to gain a very detailed understanding of
the various encryption and analysis algorithms.

5.1 Examples of Student Research Projects

In addition to the examples of programming projects mentioned above, Heryp-
toJ has served as an evolving platform for student and faculty research in a
variety of areas, including the following projects:

e HcryptoJ’s and CryptoTooll’s original design and implementation were
the result of a semester-long project in an Introduction to Software En-

14

gineering course. They were subsequently revised as part of a student-
faculty summer research project ([5]).

e HcryptoJ was used as a platform for the development and testing of simple
substitution analyzer based on the genetic algorithm GA approach. This
project demonstrated that a word-based genetic algorithm could success-
fully cryptanalyze short cryptograms ([6]). Presently a pair of first-year
computer science students are using the GA to design and run various
experiments aimed at improving its performance.

e A senior computer science major researched and developed an implemen-
tation of the RailFence cipher as her senior project. See

http://starbase.trincoll.edu/ " crypto

e A senior computer science major is developing a frequency-based genetic
algorithm for analyzing simple substitution ciphers. When completed this
approach will be compared, experimentally, with the word-based GA.

e As another senior project, a computer science major is presently devel-
oping an expert system that will use various cryptanalysis techniques to
identify the type of cipher engine that was used to create a message. The
goal of this project is to be able to break messages written in any one of
a handful of substitution and transposition ciphers.

As these examples show, the availability of a platform such as Heryptold
makes interesting cryptographic and cryptologic work accessible to undergrad-
uates at all stages of their computer science education.

6 Related Work

There are numerous cryptography and cryptanalysis tools available. The fol-
lowing list provides a brief summary:

e Cipher Clerk — a Java applet that contains implementations of a large col-
lection of historical ciphers (http://members.magnet.at/wilhelm.m.plotz/-
Bin/CipherClerk.html).

e Secret Code Breaker — Javascript implementations of Caesar and other
substitution ciphers (http://codebreaker.dids.com).

e Advanced Cryptography Tool — A cryptographic tool that uses strong
encryption (http://maga.di.unito.it/security/resources/ACT/act.html).

e Cypher — A cryptologic tool for historical ciphers that was developed
as a software engineering project at the University of North Carolina
(http://www.cs.unc.edu/ stotts/COMP145/homes/crypt/).

15

e The Cryptology Matrix — A collection of resources, including CryptAid,
for creating and analyzing historical ciphers from New Mexico State Uni-
versity (http://www.math.nmsu.edu/crypto/public_html/).

e Cryptlib — A security toolkit that provides strong encryption and authen-
tication services (http://www.cs.auckland.ac.nz/ pgut001/cryptlib/).

e Pretty Good Privacy (PGP) — A security toolkit that provides strong en-
cryption and authentication services (http://web.mit.edu/network /pgp.html).

Most of these are commercial products that provide strong encryption and au-
thentication services. These are not suited at all for historical cryptography.
But their most important limitation for our purposes is the fact that they could
not serve as a programming and development platform for undergraduates in
computer science. Among those that are specifically designed for historical ci-
phers (CryptAid, Cypher), none provides the extensible, integrated platform
available in HeryptoJ. And none appears to be designed to support undergrad-
uate research and teaching in computer-based historical cryptography.

Similarly, although one can find examples of cryptanalysis tools online, these
are usually designed to solve one specific problem — e.g., to solve simple substi-
tution cryptograms. As far as we know, none of these provides an integrated,
extensible programming platform for the study of historical cryptanalysis, such
as that provided by Heryptold.

HeryptoJ’s cryptography and cryptanalysis framework is well-suited to to
support computer-based research and education in historical cryptology. It is
our hope that amateur cryptographers, researchers, and students of cryptology
will use HeryptodJ in their work and contribute to its continued development.

7 Plans for the Future

In addition to the projects described above, we are also working to improve the
documentation and support for Heryptod, which is available at

http://starbase.trincoll.edu/ crypto/

Although HeryptoJ is presently limited to historical cryptography, our even-
tual goal is to move beyond historical algorithms into asymmetric algorithms
and strong encryption, such as public-key encryption, and more sophisticated
forms of cryptanalysis. We currently do not offer a cryptography course but
our hope is to extend HeryptoJ in ways that would make it a suitable platform
for a upper-level computing-based cryptography course. What we’ve learned
from our past experience in this area is that one way to expand our curriculum
in that direction would be to enlist the help of students, both in courses such
as software engineering and in independent study projects, to design, program,
document, and test the system as we develop it further.

16

8 Acknowledgements

The author would like to acknowledge the work of Emeritus Professor Ralph
Walde, who has provided invaluable advice on the overall design and develop-
ment of HeryptoJ and to the following Trinity students, who have worked on
various parts of its design and development: Gregg Marcuccio, Carolyn Rucci,
Van Hong Dao, William Servos, Jacob Wegner, Sophia Knight, Brian Hart, and
Michelle Lombard.

9 References

1. Beker, H. & Piper, F. Cipher Systems. New York: John Wiley & Sons,
1967.

2. Java Cryptography Extension. URL: http://java.sun.com/products/jce/.
3. Kahn, David. The Codebreakers. New York: Macmillan, 1967.

4. Knudsen, Jonathan. Java Cryptography. Cambridge: O’Reilly & Asso-
ciates, Inc., 1998.

5. Morelli, R., Walde, R. and Marcuccio, G. A java API for historical ci-
phers. Proceedings of the Thirty Second SIGCSE Technical Symposium
on Computer Science Fducation, pp. 307-311, 2001.

6. Morelli,R. and Walde, R. A word-based genetic algorithm for cryptanalysis
of short cryptograms. Proceedings of the 2003 Florida Artificial Intelli-
gence Research Symposium (FLAIRS), forthcoming, 2003.

10 Appendix: Source Code

package hcrypto.engines;

import hcrypto.cipher.*;

public class CaesarKey extends HistoricalKey {
public final static String DEFAULT_KEY_DESCRIPTOR_PROMPT_STRING = "a positive integer";
public final static String DEFAULT_KEYWORD_STRING = "5";
private int shift;

public CaesarKey() { } // The default constructor is required.

public void init(String keyspec) throws Exception {

initKey (keyspec) ; // Inherited from superclass
this.blocksize = 1;
this.keyDescriptorPrompt = "positive integer";

this.shift = Integer.parselnt(keyword) ;
if (shift < 0)
throw new Exception ("Invalid shift value for Caesar cipher: " + shift);

17

public int getShift() {
return shift;

}

public String getAlgorithm() {
return "Caesar";

}

package hcrypto.engines;
import hcrypto.cipher.*;
public class CaesarEngine extends BlockCipher {

private int shift; // Caesar shift
private CaesarKey key;

public CaesarEngine() {
alphabetRangeOptions = "111111"; // Caesar allows all 6 possible alphabet ranges
}

protected void engineInit(HistoricalKey hKey) throws Exception {
if (!(hKey instanceof CaesarKey))
throw new Exception("InvalidKey: Caesar requires CaesarKey");
key = (CaesarKey) hKey;
alphabet = key.getAlphabet();
cipherAlphabet = key.getCTAlphabet();
shift = key.getShift();
this.blocksize = key.getBlocksize();

public String engineEncode(String s) throws Exception {
if (blocksize != 1)
throw new Exception("Invalid blocksize for Caesar cipher " + blocksize);
char ch = s.charAt(0);
if (alphabet.isInAlphabet(ch)) {
return "" + encodeShift(ch, shift);
}
else
return s;

}

public String engineDecode(String s) throws Exception {
if (blocksize != 1)
throw new Exception("Invalid blocksize for Caesar cipher " + blocksize);
char ch = s.charAt(0);
if (cipherAlphabet.isInAlphabet(ch)) {

18

return "" + decodeShift(ch, cipherAlphabet.getSize() - shift);
}
else

return s;

19

