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Abstract. Motivated by the question of determining the difference in com-
plexity between the graph-isomorphism and graph-automorphism problems,
we study the relationship between the coset-intersection (C-INT) and group-
intersection (G-INT) problems in permutation groups. We report that G-INT
is related to C-INT asymmetrically under Ogiwara and Watanabe’s notions
of left and right sets. This asymmetry suggests that, for given two permuta-
tion groups that intersect nontrivially, finding the least nonidentity element
in the intersection is likely to be easier than finding the largest nonidentity
element in the intersection under the natural lexicographic ordering. Also as
a consequence, unless it belongs to P, C-INT (resp. G-INT) is not many-one
reducible in polynomial time to any sparse set.
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Determining the complexity of the graph-isomorphism (GI) problem, i.e., the deci-
sion problem of testing whether or not two given graphs are isomorphic, is a long-
standing unsolved fundamental question in complexity theory. To this date, GI has
not been known to be in P nor NP-complete; furthermore, there is strong evidence
to suggest that the problem is unlikely to be NP-complete (see, e.g., [4]).

Of the significant affirmative results concerning GI, including Luks’s classic
polynomial-time algorithm to test isomorphism of graphs of bounded valence [6],
many have successfully exploited the problem’s close relationship with a class of
permutation-group problems usually represented by the following problem (cf. [7]).

Let Sym(f2) denote the symmetric group of all permutations on a set £ of n
points. As usual, we assume that permutation groups are specified by generators.

Problem 1. Coset intersection (C-INT).
Instance: G, H < Sym(Q2) and x € Sym({Q2).
Question: Is GN Hx # 02

Indeed, GI is <P -reducible, i.e., many-one reducible in polynomial time, to
C-INT, but the converse is not known under any polynomial-time reducibility.
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Motivated by this relationship and practical applications in computational
group theory (such as the popular software system GAP [3]), since the early 1980s,
the polynomial-time theory of permutation groups has flourished, with its mathe-
matical elegance and depth, as an important research area of its own (cf. [7]).

An important open question concerning GI is to determine its relative com-
plexity against the graph-automorphism problem (GA), i.e., the decision problem
of testing whether or not a given graph has a nontrivial automorphism. Both GI
and GA share many important similarities, but there are also some indications to
suggest that the problems are unlikely to be equivalent (cf. [4]). As with GI, GA
has not been known to be in P. Whereas GA has been shown be <P -reducible to
Gl in [5], for the reverse direction, GI has not been even known to be <%.-reducible,
i.e., Turing reducible in polynomial time, to GA.

In the polynomial-time theory of permutation groups, as GI is generalized to
C-INT, GA is similarly generalized to

Problem 2. Group intersection (G-INT).
Instance: G, H < Sym(€2).
Question: s GNH #17

It is easy to show that GA is <P -reducible to G-INT, but, just like GI against
C-INT, the converse is not known under any polynomial-time reducibility. As GI
and C-INT share many common complexity-theoretic properties,’ so do GA and
G-INT (cf. [1], [4]). Indeed, such similarities suggest that the relative complexity
between GI and GA appears to parallel that between C-INT and G-INT.

In this note, motivated by the importance of determining GI’s relative com-
plexity against GA, we pose and investigate the question of determining C-INT’s
relative complexity against G-INT. We report some new evidence to support this
suggested parallelism. A paper that amplifies this note with complete proofs will
appear elsewhere. The author wishes to acknowledge Professors Seinosuke Toda
and Osamu Watanabe for their insightful comments and encouragement.

We will use the following standard notational conventions (cf. [7]).

Notation. Let G < Sym(Q). For g € G, we denote the images of & € Q and A C Q
under g by a9 and AY, respectively. For a € Q, the point stabilizer of o in G is
the subgroup G, := {g € G | a9 = a}. For A C Q, the point-wise stabilizer of A
in G is the subgroup Ga := {g € G | §9 = 0 for all § € A}, whereas the subset
stabilizer of A in G is the subgroup Stabg(A) :={g € G| A = A}.

We throughout assume that Q = {a1,...,a,} with a linear ordering < such
that a; < --- < a,. This ordering naturally induces a lexicographic ordering <
on Sym(Q): for distinct z,y € Sym(Q), we define z < y if a® < o¥ for the least
a € Q such that o # o¥. If A; := {ay,...,;—1} for an integer ¢ < n, then we
write G() := G4, (in particular, G = G and G = 1).

Hn particular, as GI is Sg—equivalen‘c to the problem of finding generators for automorphism
groups of graphs, C-INT is Szjﬂ—equivalent to the problem of finding generators for intersections
of permutation groups (cf. [4], [7]).
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1. Elementary Properties

To begin, we recall the following fundamental result of permutation-group manip-
ulation obtained by means of the Schreier—Sims method (cf. [2], [10]).

Lemma 1 (Sims, Furst-Hopcroft-Luks). Given G < Sym(Q?), in polynomial time
one can find a series of point-wise stabilizers G = G > ... > G =1 and, for
i=1,...,n—1, complete sets of right coset representatives for GO in G,

We first observe the following basic relationship.
Theorem 2. G-INT <P C-INT.

The proof of this theorem appeals to Lemma 1 and the fact that C-INT has a
polynomial-time or-function. Since or-functions and and-functions may be of inde-
pendent interest, we summarize below what we currently know about C-INT and
G-INT with respect to such functions.

Let X be an alphabet, A C ¥* and m be an integer > 2. An or-function for A
isamap f:(X*)™ — X* such that, for any x1,...,x, € X%, f(z1,...,2m) € Aif
and only if at least one of the x;’s belongs to A. An and-function for A is defined
analogously. If A has a polynomial-time or/and-function, then, for given B C ¥*,
to assert that B <P A, it is sufficient to prove that B is <%, /<’ -reducible, i.e.,
disjunctive/conjunctive truth-table reducible in polynomial time, to A (cf. [4]).

In [5], Lozano and Tordn have constructed both polynomial-time or-function
and and-function for GI and a polynomial-time or-function for GA. Using direct
products of groups, we generalize these properties of GI and GA in

Proposition 3. C-INT has polynomial-time or-function and and-function, whereas
G-INT has a polynomial-time or-function.

Whether there is an and-function for GA is an open question. Similarly, it is
not known whether there is an and-function for G-INT.

2. An Asymmetric Property and Reductions to Sparse Sets

Our main result concerns the complexities of C-INT and G-INT with respect to
the notions of left and right sets introduced by Ogiwara and Watanabe in [9]. Such
sets are particularly known for their “totally ordered self-reducible structures” and
play critical roles in their work to generalize the following fundamental theorem of
Mahaney: P # NP if and only if no sparse set is NP-complete under <P -reduci-
bility [8]; here, a sparse set is a set of low information content in which the number
of strings of length n is polynomially bounded in n (cf. [4]).

For an alphabet X, assume a lexicographic ordering < on ¥*. Recall that,
for L € NP and a polynomial p, a p-witness set for L is A € P such that, for all
r € ¥*, x € L if and only if there is w € XPU*D such that z#w € A. The left set
of a p-witness set A, denoted by Left(A, p), is the set of all strings z#y for z € ¥*
and y € YD such that there is w € XP(#D) for which y < w and z#w € A. The
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right set of such A, denoted by Right(A4, p), is defined analogously with respect to
> in place of <. Our main result is

Theorem 4. There is a p-witness set A for G-INT such that Left(A,p) =, C-INT
and Right(A, p) =P, G-INT.

This asymmetry then implies that, under the natural lexicographic ordering
=< on Sym(2) induced by the ordering < on €, for given G, H < Sym(€2) for which
G N H # 1, finding the least element 1 # a € G N H is indeed likely to be easier
than finding the largest element 1 # b € G N H; more precisely, we have

Corollary 5. Given G, H < Sym(QQ) for which G N H # 1, the problem of finding
the least element 1 # a € GN H is <h.-equivalent to G-INT, whereas the problem
of finding the largest element 1 #b € G N H is <}.-equivalent to C-INT.

Theorem 4 is an analogue of the asymmetric property Lozano and Toran have
previously observed for GA against GI in [5]. We remark however that, as with GI,
C-INT is <P -equivalent to both the left and right sets of a p-witness set for C-INT.

The proof of Theorem 4 is a group-theoretic generalization of the method of
Lozano and Toran, while retaining some combinatorial flavor.

To prepare for an outline of the proof, we first recall from [7, Proposition 4.4]
that C-INT is in fact <P -equivalent to

Problem 3. Subset transporter (TRANS).
Instance: G < Sym(§2) and A,T C .
Question: Is there any g € G such that A9 =T"%

Inspired by this equivalence, we also see that G-INT is <? -equivalent to

Problem 4. Subset stabilizer (STAB).
Instance: G < Sym(Q2) and A C Q.
Question: Is Stabg(A) # 17

Next, to consider STAB with respect to a left set, we define

Problem 5. Left subset-stabilizer (L-STAB).
Instance: G < Sym(Q2), A C Q and x € Sym(2).
Question: Is there any 1 # a € Stabg(A) such that x < a?

We define its ‘right’ version, the right subset-stabilizer (R-STAB) problem,
analogously with respect to > in place of <.

Outline of the proof of Theorem 4. The theorem follows from the <? -equivalences
L-STAB =, TRANS and R-STAB =P, STAB. In the following, we outline reduc-
tions to derive these equivalences.

First, for TRANS <? L-STAB, consider an instance (G, A,T") for TRANS.
Let ' := {ay41,...,0n} as a copy of Q = {ay,...,a,} and Q := QU Q' where,
for a;,a; € Q, a; < o if i < j. Let ¢ be the transposition in Sym({2) such that
;' = ajynfori=1,...,nand a;' = aj_, for j =n+1,...,2n. Now, consider the
natural action of the wreath product G := G ¢ (t) on €. If I is the corresponding
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copy of I" in €', then there is g € G such that A9 =T if and only if there is @ € G
such that (AUT")® = AUT and ¢t < a. Thus, to decide if (G,A,T) € TRANS, it
is sufficient to query the instance (G, AUT",t) to L-STAB.

For L-STAB <2 TRANS, since C-INT has an or-function by Proposition 3,
we only need to prove that L-STAB <!, C-INT. Consider an instance (G, A, z)
for L-STAB; here, we may assume that x ¢ Stabg(A). For each pair a;, o; € Q
such that a; > (a;)*, we perform the following as a <%, -reduction: Use Lemma 1
to construct, if it exists, the coset G(”l)gij consisting of all g € G such that

x

— x — —
O[lg =1 ,..., O[iflg = Q1 and O[ig = Q. (1)

Then query the instance (G(+)g;;, Stabgy (o) (A)) to C-INT.
We now outline the proof of R-STAB =P STAB. Clearly, we have STAB <P
R-STAB. Now, for R-STAB <? STAB, as before, since G-INT has an or-function,

it is sufficient to prove that R-STAB <%, STAB. Consider an instance (G, A, z) for

R-STAB such that = ¢ Stabg(A). For each pair a;, o; € Q such that o < (o)”,
we perform the following as a <%, ,-reduction: If = stabilizes oy, ..., a;—1 point wise

and a; = «j, then query the instance (GUHDA) to STAB. Otherwise, construct
as before, if it exists, the coset G(i"’l)gij consisting of all g € G that satisfy (1)

and consider the following Cases 1 and 2. In Case 1, for GU+1) 9ij, we construct
an instance I for STAB so that

(i) if there is a € G0 g;; such that A® = A, then I € STAB, and
(if) I € STAB only if there is 1 # a € Stabg(A) such that a < z.

In Case 2, we decompose G(i+1) gi; into a union of subcosets and, for each such
subcoset, construct an instance for STAB so that the conditions (i) and (ii) hold.

Case 1. There are a pair oy, ap € 0 such that o < oy < a4, gij € G*) and
g9 = ay,. Let ' be a copy of 2 and A’ be the corresponding copy of A in €.
For a transposition ¢ := (12) and T := (t), under the natural action of the wreath
product A; ;1 := GUHD T on QUQ, query the instance I := (A; 41, AU A’g"fl)
to STAB.

Case 2. There are no pair in § that satisfy the condition of Case 1. We reduce this
case disjunctively to n — ¢ instances to which the method of Case 1 is applicable.
Let k be the integer < i such that g;; € G but g;; ¢ G*+D . For £ =i+1,...,n,
we find, if it exists, ke € GUtVg,; such that " = ay and apply the method
of Case 1 for the subcoset G&fjl)h@k in place of G(i“‘l)gij. O

In complexity theory, sparse sets are of great importance because the </.-
closure of sparse sets is known to be equal to the class of sets with polynomial-size
circuits and thus the class P/poly—the class of sets decidable in polynomial time
with the help of short advice (see, e.g., [4]). We now recall that C-INT has been
shown to have a 2-round interactive proof and thus belong to NP /poly (cf. [1]). It
is then natural to ask if C-INT and G-INT could belong to P/poly; that is, we ask
if these problems could be polynomial-time reducible to sparse sets. By Ogiwara
and Watanabe’s generalization of Mahaney’s theorem [9, Theorem 3.1], we have
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Corollary 6. For L = C-INT, G-INT, unless L € P, L is not <P -reducible to any
sparse set.

We remark that, technically, the Ogiwara—Watanabe theorem applies to <7,,-
reducibility, i.e., polynomial-time bounded truth-table reducibility, whose strength
is between those of <P -reducibility and <%.-reducibility (cf. [9]). Thus, Corollary 6
may also be generalized as follows: For L = C-INT, G-INT, unless L € P, L is not
<}y -reducible to any sparse set.
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