Lectures on mathematical
foundations of computing

Takunari Miyazaki

October 3, 2025

Contents

§1. Propositional logic oo 1
§2. Proof techniques 10
§3. Sets . . .o 14
§4. Functions and sequences 17
§5. Algorithms and complexity 21

§1. Propositional logic

Our first topic is propositional logic: calculus of mathematical propositions.
Formally, a proposition is a statement that is either true or false.

Ezxample 1.1. The following are all examples of such propositions.

(a) Boston is the capital of Massachusetts.
(b) New Haven is the capital of Connecticut.
(c) 1+1=2.

(d) 2n+1 is odd for any integer n > 0.

On the other hand, none of the following is a proposition, as none of them
is clearly neither true nor false.

(e) Why am I here?

(f) Go Bantams!
(8) z=uy.
(h) There are 28 days in February.

In propositional calculus, it is customary to use lowercase letters, such
as p,q and 7, to denote arbitrary propositions, with the following notation
for the five basic

Logical operators.

- for “not”

A for “and”

V for (inclusive) “or”
— for “implies”

< for “if and only if”

Ezample 1.2. If

p = “It is raining,”
q = “The sun is shining,” and
r = “There are clouds in the sky,”
then
-p = “It is not raining,”
-pAq = “It is not raining, and the sun is shining,”
pVq = “It is raining, or the sun is shining,”
p—r = “If it is raining, then there are clouds in the sky,” and
p<>r = “Itis raining if and only if there are clouds in the sky.”

In English, p — ¢ is usually read “p implies ¢,” or “if p, then ¢.” Other
equivalent expressions are “q if p,” “q whenever p,” and “p only if ¢.”

Consider propositions p and q. Here, ¢ — p is the converse of p — ¢,
and —q — —p is the contrapositive of p — ¢ and “equivalent” to p — ¢ (in a
moment, we will define this notion of equivalence). For p — ¢, we say p is a
sufficient condition for p, and ¢ is a necessary condition for p.

Ezxample 1.3. Consider p — ¢, where

p = “It is raining,” and
q

“Road is wet.”

Here, the rainy weather is a sufficient condition for wet road. It is also nec-
essary for road to be wet for the rainy weather.

P g pA P q pVg
p p T T T T T T
T F T F F T F T
F T F T F F T T
F F F F F F
P q Py P g pig
T T T T T T
T F F T F F
F T T F T F
F F T F F T

Table 1.1: Truth values of =p, pAq, pV¢q, p— qand p < q

Given propositional variables p and ¢, what are the truth values of —p,
pAg, pVq, p— qand p < g7 The truth values are defined by truth tables
for all combinations of truth values of the variables p and ¢ (see Table 1.1).

Now, consider (p — ¢) A (¢ — p) and its truth table:

p ¢ (p—=qg AN (g—p)
T T T T T
T F F F T
F T T F F
F F T T T

We notice in particular that (p — ¢) A (¢ — p) has the same truth values as
those of p <+ ¢, and this shows that these propositions are “equivalent” in

the following sense.

We formally say two propositions are logically equivalent if they have the
same truth values under all combinations of truth values of their proposi-
tional variables. To indicate logical equivalence, we use =.

On the next page, in Tables 1.2 and 1.3, we summarize some of the most
important logical equivalences (cf. [2, §1.3, Tables 6, 7 and 8§]).

pANT=p Identity laws

pVEF=p

pVT=T Domination laws
pAF=F

PpVDP=Dp Idempotent laws
PAP=D

—(-p)=p Double negation law
pVGg=qVDp Commutative laws
PAG=qAp

(pVgVr=pVigVvr) Associative laws
(PAQYAT=pA(gAT)

pV(gAT)=(pVq) A(pVr) | Distributive laws
pA@Vr)=({@AgV(pAT)

—(pAq)=-pV—q De Morgan’s laws
~(pVg =-pA—g

pV(pAq)=p Absorption laws
pA(pVg =p

pV-p=T Negation laws

P VAN -p = F

Table 1.2: Logical equivalences

p—=q=-pVq
pP—q=-q— P
pVqg=-p—q
pAg=—(p— —q)
—(p—qg) =pA—q

peqg=p@—=>q9 AN(q—p)
peqg={@AqV(pA—q)

p—=9Np—r)=p—(¢AT) p
(p—=r)A(g—=1)=(Vq) =7 —(pq) =p g
p—=q¢Vp—=r)=p—(qVr)
(p—=r)Vig—=r)={pPANq) —r

Table 1.3: Logical equivalences of conditional and biconditional statements

Logical equivalence is transitive in the sense that, for propositions p, g
and r, if p=qgand ¢ =r, then p=r.

Ezample 1.4. For propositions p and ¢, using the equivalence p — ¢ = —pV ¢
from Table 1.3 and De Morgan’s and double negation laws from Table 1.2,
the following proves the equivalence =(p — q) = p A —¢:

=(-pVgq) sincep—qg=-pVq
—(=p) A =g by De Morgan’s law
PA g by a double negation law

=(p—q)

Ezxample 1.5. For propositions p,q and r, the following proves the equiva-
lence (p =>1r)A(g—=7r)=(pVq) —r:

(p—=>r)AN(g—r) (=pV7r)A(-qgVr) sincep—qg=-pVgq
(rV=p)A(rVv-gq) by acommutative law

= rV(pA—g) by a distributive law
= (pV-og)Vr by a commutative law
= —~(pVgVr by De Morgan’s law
= (pVg —r since p =+ q¢=-pVgqg

Next, for propositions p and ¢, consider (p A (p — q)) — ¢ and its truth
table:

p ¢ ® N P—24q) — g
T T T T T T T
T F T F F T F
F T F F T T T
F F F F T T F

We notice that this proposition is always true regardless of the truth values
of p and ¢. Using known logical equivalences, it is also easy to derive that
(pA(p—q) —q=T.

In general, a proposition that is always true is called a tautology. On the
other hand, a proposition that is always false is called a contradiction. Here
is the most important

Ezample 1.6. For a proposition p, the following negation laws hold:

|
—

PV p
pA-p = F

Now, consider this statement:
2n + 1 s an odd integer.

With n unspecified, this is not a proposition; however, when n is specified,
it becomes a proposition:

2n + 1 is an odd integer for all integers n.

This is an example of quantification of a predicate: a statement with variables
that becomes a proposition with values of the variables specified.

There are two ways to quantify variables in predicates, using the univer-
sal and existential quantifiers. In the following, let p(x) denote a predicate
with a variable x in some domain.

With the universal quantifier YV, we write Y p(x) to denote “for all =
(in the domain), p(z).” Its truth values are defined by:

Va p(zx) T if p(z) is true for every x in the domain

F otherwise

That is, Va p(xz) = F if there exists z(in the domain that makes p(xg) false.
We call such an z¢ a counterezample. To prove Vz p(x), one must prove that
p(x) is true for all z in the domain. To prove it is false, it suffices to provide
one counterexample.

With the existential quantifier 3x, we write 3z p(x) to denote “there
exists = (in the domain) such that p(x).” Its truth values are defined by:

T if p(z) is true for some z in the domain
F otherwise

3z p(x)

That is, 3z p(x) = F if p(x) is false for all z in the domain. To prove 3z p(z),
it suffices to provide one example z(that makes p(zp) true. To prove it is
false, one must prove that p(z) is false for all z in the domain.

Ezample 1.7. Consider a predicate
g(n) = “2n+11is prime,”

where the set of all natural numbers is the underlying domain. Then Vn ¢(n)
denotes “2n + 1 is prime for all natural numbers n,” and 3n g(n) denotes
“there is a natural number n such that ¢(n) is prime.” Here, ¥n g(n) is false
with a counterexample ng = 4 since 2 -4 + 1 = 9 is not prime; however,
dng(n) is true with ng = 1 since 2- 1+ 1 = 3 is clearly prime.

De Morgan’s laws for a predicate p(x) state:

=V p(z) = Iz —p(z)
—Jx p(z) = Va —p(z)

Ezample 1.8. Consider a predicate
r(x) = “zistall”

where the domain consists of all people. Then —Vx r(z) denotes, “Not ev-
eryone is tall, 7 and it is equivalent to Jx —p(x), which denotes, “There is
someone who is not tall.” On the other hand, =3z r(x) denotes, “There is no
one who is tall,” and it is equivalent to VY —p(x), which denotes, “Everyone
is not tall.”

We next consider formal arguments. In propositional logic, an argument
is a sequence of propositions that begins with a number of given premises
and ends with a conclusion.

Consider this argument:

If the demand rises, then companies expand.
If companies expand, then they hire workers.
Therefore, if the demand rises, then companies hire workers.

Here, with

p = “The demand rises,”
= “Companies expand,” and

“Companies hire workers,”
this argument is an example of

p—4q
q — r Hypothetical syllogism
p—T
The validity of hypothetical syllogism follows from this tautology:
(p=an(g=7) = (7).

Hypothetical syllogism is one of the eight basic rules of inference, which
are summarized on the next page in Table 1.4.

Modus ponens

-q

p—q

-p

Modus tollens

p—4q
q—r

p—=r

Hypothetical syllogism

pVq
-p

Disjunctive syllogism

pVq

Addition

PAg

Simplification

PAg

Conjunction

pVyq

—pVr

qVvr

Resolution

Table 1.4: Rules of inference

Consider this argument:

If the Red Sox win, Sam is happy.
If Sam is happy, then he sleeps well.

Sam does not sleep well.

Therefore, the Red Sox did not win.

Here, if

p:

“The Red Sox win,”

b

= “Sam is happy,” and

“Sam sleeps well, ”
then this argument is formalized as

p—4q
q—T
-r

-p

This is not found in Table 1.4, but is it a valid argument? Yes, and here
is a formal proof that the conclusion indeed follows from the given premises,
using some of the rules of inference from the table:

1. p—q a premise

2. g—r a premise

3. -r a premise

4. p—r Dby hypothetical syllogism on 1 and 2
5. —p by modus tollens on 3 and 4

Another approach is to use modus tollens twice:

1. p—q a premise
2. g—r a premise
3. -7 a premise
4. —q by modus tollens on 2 and 3
5. —p by modus tollens on 1 and 4

Ezample 1.9. The following is a proof that —p follows from (p V q) — r, —s
and r — s.

1. (pVq) —r apremise

2. -s a premise

3. r—s a premise

4. —r by modus tollens on 2 and 3
5. =(pVyq) by modus tollens on 1 and 4
6. —pA—q by De Morgan’s law on 5

7. —p by simplification on 6

In a proof by contradiction, we assume, in addition, the negation of the
conclusion and derive a contradiction, a proposition that is always false.

Ezxample 1.10. The following is a proof by contradiction that —p follows from
(pVq) —r,—sand r — s.

1. (pVq) —r apremise
2. —s a premise
3. r—s a premise
4. =(-p) the negation of the conclusion
5. D by the double negation law on 4
6. pVgq by addition on 5
7. r by modus ponens on 1 and 6
8. s by modus ponens on 3 and 7
9. sA-s by conjunction on 2 and 8
10. F by a negation law on 9

We conclude this section with this simple argument:

If it is raining, then road is wet.
Road is wet.
Therefore, it is raining.

Here, if

= “It is raining,” and

q = “Road is wet,”
then this argument is formalized as

P—4q
4
p

This is also not found in Table 1.4. Is it a valid argument? It does not
seem so. In fact, this is an example of a so-called fallacy. Indeed, it cannot
be a valid argument because ((p — q) A ¢) — p is not a tautology.

§2. Proof techniques

A proof is a valid argument that establishes the truth of a mathematical
proposition. It begins with one or more premises and proceeds using rules
of inference to reach a conclusion.

10

A diret proof shows that, for a given premise p and a conclusion ¢, the
conditional statement p — ¢ is true by showing that, if p is true, then ¢ is
also true.

Ezample 2.1. Consider the statement:
The product of two odd integers is odd.

What are premises? What is then the conclusion? Premises may be: We
are given two arbitrary odd integers. The conclusion is that their product
is also odd. Here, recall that an odd integer is defined as an integer of the
form 2n + 1 for an integer n.

To begin our proof, let a and b be odd integers. That is, by definition,
a=2m+1and b =2n+ 1 for some integers m and n. Then

ab=(2m+1)2n+1) = 4mn + 2m + 2n + 1.

Here, 4mn +2m+2n+1 = 2(2mn +m +n) + 1; so, for k = 2mn + m + n,
which is clearly an integer,
ab =2k + 1.

Therefore, ab is also odd. O

A direct proof may not be always the best approach. For example, con-
sider, for an integer n, the statement:

If n? is even, then so is n.

We may begin with n? = 2m for some integer m > 0, but then, how do
we prove that n = v/2m is even? In this case, it turns out that it is just far
easier to consider its contrapositive for an integer n:

If n is odd, then so is n?.

In fact, this is a special case of what we just proved. In general, for propo-
sitions p and ¢, recall that p — g = —q¢ — —p; as such, a proof by contrapo-
sition shows that p — ¢ is true by showing that its contrapositive ¢ — —p
is true.

As considered earlier in the last section, a proof by contradiction begins
with the negation of a conclusion and ends with a contradiction.

Ezample 2.2. Consider the statement:

11

The sum of rational and irrational numbers is irrational.

To prove this by contradiction, we suppose, conversely, that, given a ra-
tional number a and an irrational number «, the sum b = a + « is rational.
Since a and b are both rational, there are integers k, £, m and n such that

m

a= and b:g,

where both ¢ and n are nonzero. Since @ = b — a,

m k fm—kn
aga= — — — = E——
n /£ In
where both ¢m — kn and ¢n are integers, and ¢n # 0. Thus, « is rational.
This is a contradiction. We conclude that the sum of rational and irrational

numbers must be irrational. O

Ezample 2.3. Consider the statement:
V2 is irrational.

To prove this, we suppose, conversely, that v/2 is rational. That is, there
are integers m and n such that

m
V2 =—,
n
where n # 0. We may also assume that m and n have no common divisor
other than 1. This then implies that

or, equivalently, m? = 2n?. That is, m? is even. For such an m, we have

just proved that m must also be even. So, m = 2/ for some integer £. Then,
since m? = 2n?, it follows that 4¢> = 2n2. That is, n? = 2¢2. By the same
argument as m’s, since n? is even, n must also be even.

In sum, both m and n are even. This is a contradiction since m and n
have no common divisor other than 1. Therefore, we conclude that v/2 must
be irrational. O

Some proofs require multiple arguments under a number of case-by-case
scenarios. We call such a proof method a proof by cases.

Ezxample 2.4. Consider, for an integer n, the statement:

12

n, n+1 orn—+ 2 s divisible by 3.

To prove this, we consider all possible remainders of the integer division
of an integer n by 3. By the so-called division algorithm, which we will study
in depth later, this results in three possible remainders: 0, 1 and 2. That is,
n =3k, n=3k+1orn=23k+ 2 for an integer k. We will consider each of
the three cases separately.

We suppose first that n = 3k. In this case, evidently, n itself is divisible
by 3.

Next, we suppose that n = 3k + 1. In this case,

n+2=0Bk+1)+2=3k+3=3(k+1),

proving that n 4 2 is divisible by 3.
Finally, the last case to consider is when n = 3k + 2. In this case,

n+1=3k+2)+1=3k+3=3(k+1).

That is, n + 1 is divisible by 3.
As demonstrated in the three cases, we conclude that n, n + 1 or n + 2
is divisible by 3. U

Exact mathematical propositions often assert equivalence in bicondition-
al if-and-only-if statements. In general, for propositions p and ¢, recall from
§1 that p <> ¢ = (p — ¢q) A (¢ — p); that is, proving p <> ¢ is equivalent
to proving p — ¢ and ¢ — p. In practice, to prove such an if-and-only-if
statement, we most often take the latter approach and prove two conditional
statements in both directions separately.

Ezample 2.5. Consider, for an integer n, the statement:
n 1s even if and only if n + 1823 is odd.
For this, we prove, separately, the following two conditional statements:
(i) If n is even, then n + 1823 is odd.
(ii) If n+ 1823 is odd, then n is even.
To prove (i), we first assume that n = 2k for an integer k. Then
n+ 1823 = 2k 4+ 1823 = 2(k +911) + 1,
proving that n + 1823 is odd.

We leave a proof of (ii) as an exercise. O

13

§3. Sets

A set is an unordered collection of distinct objects called elements (or mem-
bers). By “distinct”, we mean that there can be no multiple occurances of
the same element. A set is often described by listing its elements between a
pair of curly braces, and it is unordered in the sense that the elements can
be listed in any order, e.g., {0,1,2} = {1,2,0}.

In general, it is customary to use uppercase letters to denote sets and
lowercase letters to denote elements. Some uppercase letters in the boldface
are reserved to denote commonly-used sets of numbers; for example,

Z ={...,-3,-2,-1,0,1,2,3,...}, the set of all integers,
N =10,1,2,3,...}, the set of all natural numbers,
R is the set of all real numbers, and

Q is the set of all rational numbers.

If a is an element of a set A, then we say a belongs to A and write a € A;
otherwise, we write a € A. For example, /2 € R, but, as we have proven in

Example 2.3, V2 € Q.
An important way to define sets is to a variable and its predicates that

specify properties in the following format:
{a variable : its predicates specifying properties}

In this case, it consists of all elements that satisfy the given properties.
For example,
{n:n € Z and n is even}

defines the set of all even integers. This notation, often called the set-builder

notation, is somewhat loosely used in that

{n € Z:niseven},
{n :n =2k for some k € Z} and
{2n:n e Z}

also all define the same set of all even integers.
Intervals are infinite sets of all real numbers between given upper and
lower bounds. In particular, given a,b € R such that a < b,

[a,b] ={z € R:a <z < b},

14

(a,b) ={zx e R:a < x < b},

[a,b) ={r € R:a <z <b}and

(a,b) ={z e R:a <z <b}
here, we often call [a, b] the closed interval, (a, b] and [a, b) half-open intervals
and (a,b) the open interval (or segment) between a and b.

Let S and T be sets. We say S is a subset of T', denoted by S C T, if

each element of S is an element of T'. The sets S and T are equal, denoted
by S=T,it SCTand T CS. If S C T but S # T, then S is a proper

subset of T'; denoted by S C T.
The empty set, denoted by 0, is the unique set that has no element.

3.1. For any set S, the empty set) C S. U

The power set of a set S, denoted by P(S) (or 2%), is the set of all subsets
of S. For any set S, clearly,) € P(S) as well as S € P(5).

Ezample 3.2. If S = {0, 1}, then
P(S) = {®7 {0}7 {1}7 {07 1}}

The cartesian product of sets S and T is the set of all ordered pairs (s, t),
where s € § and t € T, and denoted by S x T.

Ezample 3.3. If S ={0,1} and T' = {a, b, ¢}, then
S x T ={(0,a),(0,b),(0,¢),(1,a),(1,b), (1,¢c)}.

If a set S has a finite number of elements, then the size (or order) of S,
denoted by |S], is the number of elements of S.

3.4. If S and T are finite sets, then

(i) [0] =0,
(i) |S x T| =S| x |T| and
(iii) |P(S)| = 2I51. 0

For sets A and B,

(i) the union of Aand Bis AUB ={z:x € Aor z € B},

15

ANU=A Identity laws
Auld=A

AuU=U Domination laws
AnD =10

AUA=A Idempotent laws
ANA=A

A=A Complementation law
AUB=BUA Commutative laws
ANB=BnNA

AU(BUC)=(AuB)UC Associative laws
AN(BNC)=(AnB)NnC
AU(BNC)=(AuB)n(AuUC) | Distributive laws
AN(BUC)=(ANB)U(ANCO)

ANB=AUB De Morgan’s laws
AUB=AnB

AUANB)=A Absorption laws
AN(AuB)=A

AUA=U Complement laws
ANA=10

Table 3.1: Set identities

(ii) the intersection of A and Bis ANB ={x:2z € A and x € B}, and
(iii) the difference of A and Bis A— B = {z:x € A but z ¢ B}.

The universal set is the set of all elements under consideration and often
denoted by U. The complement of a set Ais A ={x:2 € U butz ¢ A};
that is, A = U — A.

Table 3.1 above summarizes set identities analogous to the logical equiva-
lences in Table 1.2. Indeed, these identities all follow from the corresponding
logical equivalences, as we demonstrate some of them below.

Proof of the distributive law AU(BNC) = (AUB)N(AUC). We will prove
AU(BNC)C (AUB)N(AUC) and then (AUB)N(AUC) C Au(BNCQC).
First, let x € AU (BN C). By definition, x satisfies

re€AV(xe BAz e CO),

16

which is logically equivalent to, by the distributive law from Table 1.2,
(reAvzeB)AN(xe AVvzeC).

The latter implies that € AU B and x € AU C, which in turn means that
x€(AUB)N(AUC). Thus, AU(BNC)C (AUB)N(AUC).
Next, let y € (AU B) N (AU C). Here, y satisfies

(ye AVye B)A(ye AvyeO).

By the same distributive law from Table 1.2, y € A or y € BN C, which in
turn means that y € AU (BNC). Thus, (AUB)N(AUC)C AU(BNO).
We can now conclude that AU (BNC)=(AUB)N(AUC). O

De Morgan’s laws can also be proved using the same approach, but it
can be shortened in the following way.

Proof of De Morgan’s law AN B = AU B. We first note that, by definition,
forx e U, x € AN B if and only if x € AN B, or, equivalently, = satisfies

p(z) = ~((z € A) A (z € B)).
On the other hand, for z € U, x € AU B if and only if x satisfies
q(z) =~(z € A) V-(x € B).

By De Morgan’s law from Table 1.2, p(z) and ¢(z) are logically equiva-
lent. Therefore, for x € U, x € AN B if and only if z € A U B. We have just
shown that AN B and AU B are subsets of one another. We conclude that
ANB=AUB. O

§4. Functions and sequences

Given nonempty sets S and T, a function f : S — T is an assignment of
exactly one element of T' to every element of S; to emphasize this clear and
umambiguous property, we also say f is well defined. For such an f: S — T,
we say f maps S into T and call S the domain and T the codomain of f.
Let f: S — T be a function. The unique element of T" assigned to s € S
by f, called the image of s under f, is denoted by f(s). For a subset S’ C S,
the set {f(s") : &' € '}, called the image of S’ under f, is denoted by f(S’).
The subset f(S) C T, the image of S under f, is also called the range of f.

Definition. Let f: S — T be a function.

17

(i) f is one-to-one (or injective) if, for all s,s’ € S, whenever s # &,
f(s) # f(s).
(ii) f is onto (or surjective) if f(S) =T.

(iii) f is ome-to-one correspondence (or bijective) if f is both one-to-one
and onto.

Let f : S — T be a function. To prove that f is one-to-one, it suffices
to prove that, for all s,s’ € S, whenever f(s) = f(s'), s = s’. To prove that
f is onto, it suffices to prove that, for any ¢ € T, there is s € S such that
f(s) =t.

In the following, as usual, Z is the set of all integers, N is the set of all
natural numbers, and R is the set of all real numbers.

Ezample 4.1. Consider a function f : Z — Z defined by f(n) = n + 1 for
n € Z. This f is both one-to-one and onto.
First, to see that it is one-to-one, consider m,n € Z such that f(m) =
f(n). That is, m +1 = n+ 1 and thus m = n. Therefore, f is one-to-one.
To prove that it is onto, consider £ € Z and let kK = ¢ — 1. Here,
f(k)=k+1=(—1)+ 1=/ Since k € Z, this proves that f is onto.

Ezample 4.2. Consider a function g : R — R defined by g(z) = 22 for
x € R. This g is neither one-to-one nor onto.

To see that it is not one-to-one, we notice that, while 1 # —1, g(1) =1 =
g(—1). To prove that it is not onto, it suffices to note that there is no real
number whose square is a negative number, say, —1. For both properties,
giving such counterexamples is sufficient.

For x € R, the floor of x, denoted by |x], is the largest integer < x, and
the ceiling of =, denoted by [z], is the smallest integer > z. For example,
V2] =1, whereas [v2] = 2. Clearly, for any n € Z, [n]| = [n] = n.

Ezample 4.3. Consider a function h : R — Z defined by h(z) = |z| for
z € R. This h is onto but not one-to-one.

To see that it is onto, consider n € Z. Then h(n) = |n| = n. This
proves that h is onto.

On the other hand, while v/2 # 1, h(v/2) = 1 = h(1). This proves that

h is not one-to-one.

Given functions f: S — T and g : T — U, the composition (or product)

18

of f and ¢ is the function go f : S — U defined by

(g0 f)(x) = g(f(z))
forx € S.
Example 4.4. Consider functions f : Z — N defined by f(n) = n? for n € Z
and g : N — R defined by g(n) = /n for n € N. The composition of f and
g is the function go f : Z — R defined by
2
(g0 f)(n) = g(f(n)) = g(n*) = Vn? = n5

for n € Z.

Function composition is associative in the following sense.

Proposition 4.5. If f: S =T, g:T = U and h: U = V, are functions,
then ho(go f) = (hog)o f.

Proof. We first note that, by definition, since go f is a function from .S to U,
ho(go f) is a function from S to V. Similarly, (hog)o f is also a function
from S to V. Thus, it remains to prove that ho (go f) = (hog)o f.

It suffices to show that, for any s € S, (ho (go f))(s) = ((hog)o f)(s).
By definition, for any s € S, (ho(go f))(s) = h((g o f)(s)) = h(g(f(s))),
whereas ((hog)o f)(s) = (hog)(f(s)) = h(g(f(s))). That is, for any s € S,
the elements (ho(go f))(s) and ((hog)o f)(s) are equal. We conclude that
the two compositions are equal. O

Definition. An inverse of a function f : S — T is a function f~!: T — S
such that

(i) f1(f(s)) = s for all s € S and
(i) f(f~'(t)) =tforallteT.

Not all functions have inverses. We call those that do invertible.

Theorem 4.6. A function f is invertible if and only if [is one-to-one
correspondence.

Proof. We will first prove that, if a function f is invertible, then f is one-
to-one correspondence. Suppose that a function f : S — T has an inverse

19

f~t:T — S. If, for some s,s’ € S, f(s) = f(s'), then

s= [T f(s) = FH(f()) =5,

which proves that f is one-to-one. To see that f is onto, let £ € T and
s = f~1(t). Then

which proves that f is onto.

We will next prove that, if a function f is one-to-one correspondence,
then f is invertible. To begin, consider a one-to-one correspondence function
f:S —T. Since f is onto, for any t € T, there is s € S such that f(s) =¢;
in fact, since f is also one-to-one, there is only one such s. Here, for given
t € T, we define, with t’s unique s € S such that f(s) =1,

g(t) = s.

This g defines a function from T to S, and it is indeed uniquely defined.
We now claim that ¢ = f~!, the inverse of f. For this, we must prove that
g(f(s)) = s for all s € S and that f(g(t)) =t for all t € T. First, for any
given s € S, there is ¢ € T such that f(s) = ¢ and thus g(¢) = s so that
g(f(s)) = g(t) = s. Conversely, for any given ¢t € T', there is s € S such that
f(s) =t and thus g(¢) = s so that f(g(t)) = f(s) =t. We have shown that

g=1I" O

For the set of all natural numbers N, a sequence is a function s : N — S
for some set S, where, for n € N, each image s(n) is called the nth term of
the sequence. For such a sequence, it is also customary to write, for n € N,

sp = s(n) and {sp tnen = s(IN).
An arithmetic progression is a sequence {ay, }nen defined by

an = ap +dn

for n € N, where ag is the initial term, and d is the common difference.
A geometric progression is a sequence { gy, }nen defined by

gn = QOTn

for n € N, where gg is the initial term, and r is the common ratio.

Ezxample 4.7.

20

(a)

§5.

Let {an, }nen be an arithmetic progression defined by ag = 0 and d = 2,
i.e., a, = 04 2n for n € N. Here,

ag :0,(11 = 2,a2 :4,(13 :6,...
That is, this defines the sequence of all nonnegative multiples of 2.

Let {gn}nen be a geometric progression defined by go = 1 and r = 2,
ie., goh =1-2" for n € N. Here,

go=1,01=2,92=4,93=8,...

That is, this defines the sequence of all powers of 2. The terms of a
sequence need not be always increasing. For example, if r = —1, then
the terms of this sequence become

go =]-ng = _1)92 = 1793 = _17"')

alternating with only 1 and —1; in particular, for n € N, g, = 1if n
is even, and g, = —1 if n is odd.

Algorithms and complexity

The notion of algorithms is fundamental to all of computer science. Simply
put, an algorithm is a finite sequence of precise and simple instructions. Of-
ten, we also consider algorithms with respect to these general features (cf. [1,

§1.1]):

Finiteness. An algorithm is a finite sequence of finite statements. It
must also terminate after a finite number, however large, of steps.

Definiteness. Each step of an algorithm must be precisely defined, in
rigorous and unambiguous terms.

Input. Zero or more inputs are initially given before execution.
Output. An algorithms generates one or more outputs.

Effectiveness. Each operation defined must be sufficiently simple that,
in principle, it can be completed exactly by human manually, given suf-
ficient time.

We now consider a very simple problem that admits two very different
approaches.

21

Searching.
Given: a sequence S = (s1,...,8,) and a target x.
Find: an index i such that x = s; if such an i exists, or O otherwise.

A natural approach to solve this problem is so-called linear (or sequen-
tial) search, which simply compares x against s; € S fori=1,...,n:

function linear-search(S, z)

begin
1:=1;
while (i <n and z # s;) do

1i=1+41;
if (¢ <n) then return i;
else return 0;
end.

If, in addition, it is known that S is sorted such that s; < ... < s, then
binary search, which repeatedly compares x against the middle of a reduced
search range and bisects it to reduce it further, is more effective:

function binary-search(S, z)

begin
{:=1;
ri=mn;
while (¢ < r) do

begin
m = |(0+7)/2);
if (z > s;,) then £ :=m + 1;
else r :=m;
end;
if (x = s¢) then return ¢;
else return 0;
end.

When analyzing efficiency of an algorithm formally, we most often focus
on the time it takes in the worst case. We express time in a function of the
input size n, where the time corresponds to the number of “unit operations”
executed. We call such a function the (time) complexity of the algorithm. In
case of searching, we measure time by the number of element comparisons
performed.

22

For linear search, it is easy to see that the number of element comparisons
performed is just one in the best case (when x = s1) and n in the worst case
(when x = s, or x does not exist in 5).

For binary search, for simplicity, we assume that n = 2% (i.e., k = logy n)
for some integer k > 0. The length of the search range is halved each time. In
particular, the length is 7 — £+ 1. Initially, this is n = 2¥. In the next round,
this becomes 271, Tt is halved until it becomes 1. That is, the loop runs k
times, with just one comparison each time. With one more comparison at
the end, the total number of comparisons is & + 1 = logy n + 1.

When analyzing algorithms, it is often useful to consider efficiency with
respect to broad families of functions, such as the linear and quadratic fam-
ilies. To focus on growth rates, as represented by familiar expressions

2 3
1, logyn, n, nlogyn, n°, n°, ..., 2" nl, ...,

we will use the so-called O notation.

As usual, let N denote the set of all natural numbers and R=° denote
the set of all nonnegative real numbers. For simplicity, in what follows, we
will focus on functions mapping N into R=0.

Definition. For functions f and g mapping N into RZ°, we say f(n) is
O(g(n)) for n € N if there are constants ¢ > 0 and ng > 0 such that

f(n) < cg(n)

for all integers n > ng.

The general goal is to categorize a given function f under another func-
tion g that represents a well-known growth rate by approximating f from
above with g.

Example 5.1.
(a) f(n) =2n+1 is O(n) for n € N. To see this, we notice that
fn)=2n+1<2n+n=3n
for all integers n > 1 (here, we must exclude zero as it would otherwise

imply 1 <0). That is, with g(n) =n, c=3 and ng = 1, f(n) < cg(n)
for all integers n > nyg.

23

(b) f(n) =3n%+2nlogyn + 1 is O(n?) for n € N. For this,
f(n) =3n% 4+ 2nlogyn + 1 < 3n% 4+ 2n% + n? = 6n?

for all integers n > 1 (here, we exclude zero again for the same reason).
That is, with g(n) = n?, ¢ = 6 and ng = 1, f(n) < cg(n) for all integers
n > no.

(c) f(n)=1+2+---+nis O(n?) for n € N. For this, we recall that

1
f(n):1_|_2_|_..._|_n:n(n;_)7
where ())))
n(n+1 n n _n n 9
_— - < — - —
2 g taso T =m

2

for all integers n > 0. That is, with g(n) = n*, ¢ = 1 and ng = 0,

f(n) < en? for all integers n > ng.

The O notation naturally subsumes constants. It also preserves addition
and multiplication and is transitive in the following sense:

Theorem 5.2. Let f, g, f', ¢’ and h be functions mapping N into R=0.

(i) For n € N, if f(n) is O(g(n)), then kf(n) is also O(g(n)) for any
constant k > 0.

(il) Forn € N, if f(n) is O(g(n)), and f'(n) is O(g'(n)), then

(a) f(n)+ f'(n) is O(g(n) +g'(n)), and
(b) f(n)f'(n) is O(g(n)g'(n)).

(iii) For n € N, if f(n) is O(g(n)), and g(n) is O(h(n)), then f(n) is
O(h(n)).

Proof. To prove (i), for given f and g, consider constants ¢ > 0 and ny > 0
such that f(n) < cg(n) for all integers n > ng. Let k be a constant > 0. If
¢ = ke, then kf(n) < g(n) for all integers n > ng. Thus, kf(n) is O(g(n))
for n € N.

To prove (ii), for given f, g, f" and ¢’, consider positive constants ¢ and ¢/
and nonnegative constants ng and ny such that f(n) < cg(n) for all integers

24

n > ngand f'(n) < ¢'(n) for all integers n > nfy. If ¢; = max(c,), co = ec
and n; = max(ng, np), then

f(n) + f'(n) < eg(n) + dg(n) < cr(g(n) + g'(n))

and
f(n)f'(n) < eg(n)c'(g) = cag(n)g’(n)

for all integers n > nq, proving (ii).

To prove (iii), for given f, g and h, consider positive constants ¢ and ¢’
and nonnegative constants ng and ny such that f(n) < cg(n) for all integers
n > no and g(n) < h(n) for all integers n > nly. If ¢y = ¢ and ny =
max(ng,ny), then

F(n) < cg(n) < eh(n) = eih(n)

for all integers n > nq, proving (iii). O

References

[1] D. E. KNUTH, Fundamental algorithms, 3rd ed., The Art of Computer
Programming, vol. 1, Addison-Wesley, Reading, Mass., 1997.

[2] K. H. ROSEN, Discrete mathematics and its applications, 8th ed., Mc-
Graw-Hill, New York, 2019.

Trinity College
Hartford, Connecticut

25

	Propositional logic
	Proof techniques
	Sets
	Functions and sequences
	Algorithms and complexity

