Evolving Keysfor Periodic

Polyalphabetic Ciphers

Ralph Morélli and Ralph Walde
Computer Science Department
Trinity College
Hartford, CT 06106
ralph.morelli@trincoll.edu

Abstract

A genetic algorithm is used to find the keys of Type

Il periodic polyalphabetic ciphers with mixed primary
alphabets. Because of the difficulty of the ciphertext
only cryptanalysis for Type Il ciphers, a multi-phased
search strategy is used, each phase of which recovers a
bigger portion of the key.

Introduction

A periodic polyalphabetic ciphewith periodd encrypts a
plaintextmessage intoiphertextby replacing each plaintext
letter with a letter from one dfl substitution alphabets. The

d alphabets are typically selected from a sequence of related
alphabets that is repeated as often as necessary to encrypt

the message.

In polyalphabetic encryption a message is broken thto
columns, each encrypted by a different alphabet. The longer
the periodd—the more alphabets used-the more difficult it
is to unscramble the message.

Ciphertext only cryptanalysis the process of recovering
the plaintext directly from the ciphertext message without

access to the message key. The search space for this type o

problem is much too large for brute force approaches. For
a polyalphabetic cipher with a 26-letter alphabet and jgerio
d the key space contair! x 267! possible keys. That
gives approximately03? keys for a period of length 5 and
10°2 keys for a period of length 20.

Several studies have used the genetic algorithm (GA) suc-
cessfully in ciphertext only cryptanalysis (Clark and Daw-
son 1997, Matthews 1993, Morelli, Walde and Servos 2004,
Morelli and Walde 2003, Spillman 1993 and Spillman,

recover increasingly longer portions of the key. As desttib
more fully in the discussion, our results compare favorably
to other approaches reported in the literature.

Polyalphabetic Ciphers

Following (King 1994), a polyalphabetic cipher can be de-
fined as follows. Giverd cipher alphabetg’; ... Cy, let

gi + A — C; be a mapping from the plaintext alphal¥eto
thei'” cipher alphabe€;(1 < i < d). A plaintext message
M = my...mgmgy1...Mmaq ... IS enciphered by repeat-
ing the sequence of mappings . . ., g4 everyd characters,
giving

E(M) = gi(mi1)...ga(ma)gi(mat1)...ga(m2a)... (1)

Although in the most general case the cipher alphabets are
completely unrelated, in many classical polyalphabetic ci
phers the alternative alphabets, ..., C,; are shifted ver-
sions of the mixed primary cipher alphabét;. Thus, in
addition to themixed primary alphabetC;, a second key,

the shift keywordis used to specify both the period and the

]shifts used to generate the other cipher alphabets, with 'a’

representing a shift of 0, b’ a shift of 1, and so bn.

In shifted polyalphabetic ciphers, the alternative alpgiab
are derived by performing a shift modulo 26 on each letter
of the mixed primary alphabet. In the following example,
the second alphabet is derived form the first by shifting each
of its letters by one modulo 26:

zerosumgabcdfhijklnpgtvwxy
af sptvnhbcdegij kIl mogruwxyz

In this case the primary alphabet is a simple substitutien al

Janssen and Nelson 1993) Delman (2004) prOVideS a recentphabet generated from the primary keywmosumgame

study that compares various efforts to apply GAs cryptogra-

Thus, a polyalphabetic cipher with shifted alphabets en-

phy. GA approaches evolve the message key(s) by repeat-cryption can be represented as the composition, or product,
edly decrypting the message and measuring how close the of two operations: a substitution step, to create the mixed

resulting text is to plaintext.

For polyalphabetic ciphers, the search is made more diffi-
cult by the fact that each letter in two-lettdrigram), three-
letter ¢rigram), or four-letter {etragram sequences is en-
crypted from a different alphabet. In this study, we show
that a collection of GAs working in parallel can be used to

Copyright © 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

primary alphabet, and a shift step, to derive a secondary
alphabets. Substitution involves replacing a plaintettete

This type of cipher, which is sometimes callediauble-key
cipher, was first introduced in the 15th century by Alberti and ex-
tended with contributions by Trithemius, Belaso, Porta, and Vi-
genere. Such ciphers have been well studied, both from an histor-
ical perspective (Kahn 1967, Bauer 1997) and as the basis behind
secure, contemporary ciphers (Rubin 1995).

with the corresponding letter from the mixed primary alpha-
bet. The shift step involves shifting a letter by an arbitrar
amount (modulo 26).

The order of these operations is significant and leads to
two different ciphers known as Type | and Type Il (Gaines
1939). In Type |, where substitution is performed first, the
encryption and decryption operations can be represented as

¢j = gi(my) (C1(my) + ki) (mod26))
m; = g; ' (¢)) Ci (¢ + 26 — k;)(mod26)) (3)

where Cy(m;) represents substitution of theh plaintext
characterm;, from the primary cipher alphabét; andk;
represents the shift of the resulting ciphertext letterdén
cryption the inverse operations are applied.

In Type Il the shift step is performed before substitution,
leading to the following encryption and decryption opera-
tions:

¢; = gi(my) C1((mj + k;)(mod26)) (4)
mj = g; ' (¢)) (C7(¢)) + 26 — k;) (mod26) (5)

A familiar way to represent a set of shifted alphabets is & us
a Vigenere tableauin which the mixed primary alphabet,
C1, is placed in the first row and alternative alphabets are
placed in successive rows. The following table corresponds
to a Type | cipher:

Pl ai nt ext
ABCDEFGHI JKLMNOPQRSTUVWXY?Z
Azerosumgabcdfhijklnpgtvwxy
K B afsptvnhbcdegij k|l mogruwxyz
E C bgtquwoicdef hj kIl mnprsvxyza
Y Ci phert ext
Z.ydgnrtl fzabceghij kmopsuvwx

The rows of the table represent the shifted alphabets. For
example, the shift keywor&YMBOLwould select the fol-
lowing alphabets from the above table:

Pl ai nt ext

ABCDEFGHI JKLMNOPQRSTUVWXY?Z
SSrwjgkmeystuvxzabcdfhilnopgq
Y xcpmgskeyzabdfghijlnortuvw
K Ml gdaegysmnoprtuvwxzbcfhijk
E B afsptvnhbcdegij k|l mogruwxyz
Y OnsfcgiauopqrtvwxyzbdehijkIl m
L: kpczdf xrl mnogstuvwyabeghi]|j

To encrypt the word “the” using the above table, we re-
place 't" with its corresponding letter from tig@alphabet.
This is equivalent to replacing 't’ by 'p’ from the mixed pri-
mary alphabet and then shifting 'p’ lgplaces (modulo 26).

In either case, 't’ is encrypted as 'h’. The word “the” would
be encrypted as “hee.”

The table corresponding to a Type Il cipher would be rep-
resented as follows:

Pl ai nt ext
ABCDEFGHI JKLMNOPQRSTUVWXYZ
A zerosumgabcdfhijklnpgtvwxy
K B erosumgabcdfhijklnpgtvwxyz

E Crosumgabcdfhijklnpqgtvwxyze
Y .
S npgtvwxyzerosumgabcdf hij kIl
Y xXyzerosumgabcdfhijklnpgtvw
M fhijklnpgtvwxyzerosumgabcd
Zz:yzerosumgabcdfhijklnpgtvwx

To encrypt “the” using the shift keyword SYMBOL, we
would select the corresponding letters from 8)¢&, andM
rows, giving “duk”. This is equivalent to taking a letterysa
't’, shifting it by, says, giving 'I', and replacing the result
with the corresponding letter from th@&, alphabet, giving
d.

Index of Coincidence

Type Il ciphers are much more difficult to analyze than Type
I. To show this it is necessary to describe thdex of Coin-
cidence The IC is a measure used to distinguish text that has
been encrypted with a polyalphabetic cipher from plaintext
or from text that was encrypted with a single alphabet. First
described by (Friedman 1920), the IC is the probability that
two symbols chosen at random from a text will be equiva-
lent. For a text of lengtiN written in the standard alphabet,
A...Z,wheref represents character frequencies, the IC is
expressed as:

Zi:A,Z fi(fi—1)

1C = N(N—-1).

(6)

As Friedman showed, the IC value for English plaintext and
for a simple substitution cipher will be around 0.066. Text
encrypted by a polyalphabetic substitution cipher would
have an IC value less than 0.066 depending on the number
of alphabets used. Polyalphabetics with periods greader th
10 would have IC values that approach 0.038.

Finding the Period

Regardless of whether Type | or Type Il encryption was used
in creating a ciphertext, the IC can be used to find the ci-
pher’s period by performing an exhaustive search on each
possible period from 1 to some maximum length. For each
possible periodd;, the plaintext is broken intd; columns
and the IC is computed for each column. dlfis the cor-
rect period, the average IC of tdecolumns will be close to
0.066. If none of the values get close enough to 0.066, we
take thed; associated with the highest IC value. While this
algorithm is not guaranteed to find the correct period, we
found it to be successful in nearly 100 percent of the cases.

Typel versus Typell Cryptanalysis

Once the cipher’s period is known, cryptanalysis of a Type
I cipher is very straightforward. Consider the following de
piction of Type | encryption (substitution then shift):

(7

When plaintextP, which has an IC of 0.066, is replaced by
substitution &) from the mixed primary alphabet, the re-
sulting ciphertextC, will have an IC value approximately

1 2
Po.066 = Co.066 — Co03s

equal to plaintext {C = 0.066). When the ciphertext
is then shifted), resulting in a new ciphertext;?, its
IC value will be characteristic of a polyalphabetic cipher
(IC =~ 0.038).

Given this characterization of a Type | cipher, it is easy to
see that the following strategy can be used to break Type |
messages:

Po.oss <= Cpo66 — Cooss (8)
In other words, when the correct reverse shifts) @re ap-
plied to the ciphertext, the result will be a ciphertext wain
IC value characteristic of a simple substitution ciphere Th
IC can be used on the intermediate cipher téxt, to de-
termine when the correct reverse shifts have been applied.
Thus, the shift keyword for a Type | cipher can be recov-
ered by trying all possible reverse shifts. The correct et o
reverse shifts will produce a simple substitution cipherte
C'! whose IC value will be close to 0.066. Analysis of the
recovered simple substitution ciphertext,, will lead to re-
covery of the mixed primary alphabet, which can then be
applied &) to recover the plaintext.

By contrast, the model for Type Il encryption is as fol-
lows:

)

In this case, the shifts are applied first), resulting in ci-
phertext that is polyalphabetid' ~ 0.038). The shifted
text is then replaced using the mixed primary alphabg}, (
leading to ciphertext that is now the result of the product of
two operations.

Viewed thusly, it is clear that one way to break Type II
would be first to recover and apply the primary key)(and
use it to recover and apply the shift keyword):

3 4
Po.066 — Cp.o3s = Co 066

Po.oss — C.o3s <= Coyo3s (10)

However, this approach will not work because there is no ef-
fective way to determine the mixed primary alphabet solely
by analyzing the intermediate cipherte&t. Neither the IC

nor any other statistical measure provides a means to iden-
tify the correct primary key independently of the shift key-
word.

Therefore, to cryptanalyze Type Il ciphers we need a strat-
egy that composes both the substitution and shift steps in re
verse order, so that the IC of the resulting text will apploac
that of plaintext (0.066).

A Multi-Phase GA Approach

Our approach for breaking Type Il ciphers uses a multi- Resovered Double Key:
phase, genetic algorithm (GA) as the basic search mecha-

nism. Once the correct period, is found, the ciphertext is
divided intod columns. The letters in a given column have
all been encrypted from the same alphabet. Moreover, the

Thus, once the correct period is found, we perform GA
search on two, then three, then four adjacent columns of ci-
phertext. At each phase we generate a partial decryption of
the columns by composing the shift and substitution steps
(« 4+ <). This leads to the recovery of increasingly larger
portions of both the shift keyword and the primary (substitu
tion) alphabet. After completion of the four-column phase,
the GA has recovered enough of the primary substitution
alphabet to allow full recovery of the message. Thus, our
approach goes through the following phases:

0 Determine the periodi, of the ciphertext.

1 For columns 1-2 of the ciphertext, use GA search to find
the best 2-letter shift keyword and primary alphabet com-
positions.

2 Given results from phase 1, use GA search to find the best
3-letter shift keyword and primary alphabet compositions
for columns 1-3 .

3 Givenresults from phase 2, use GA search to find the best
4-letter shift keyword and primary alphabet compositions
for columns 1-4.

4 Given the partially correct primary alphabet from the pre-
vious step, find the best candidate shift keywords of length
d.

5 Given the best candidate shift keywords, use GA search to
find the best shift keyword/primary alphabet composition.

After phase 5, the ciphertext has been reduced to a simple
substitution cipher, which can easily be solved.

Ciphertext Columns
LFQBHZ
EGOFEF
JEKDCH

Phase 0. Find the
period, & = &

EGETwWZ

Phase 1: Analyze

Random _Primarfy Key
Columns 1-2

gvhwiaml... b

Partial Primary Key
agoy....bf

'

Partial Primary Key
A 3

'

Mostly Correct Primary Key
abedefahijkinmnoparstuysoeyz

!

Phase 4: Recover
shift keyword.

Phase 2: Analyze
Columns 1-3

aba abb abe .. abz

Phase 3: Analyze
Columns 1-4

abba abbb abbe .. abbz

abbef | pbedefghijkimnopgrstury=xwyz

¥ ¥y

Phase 5: Recover
primary key.

¥
abcdefghijklmnopgratuvxwyz + abbef

Figure 1: Multi-phase GA search on a Type Il cipher with
the primary alphabetbc...zand shift keywordabbct

alphabets used to encrypt adjacent columns are related to Figure 1 provides a more detailed depiction of the search

each other by means of some shiftp z

strategy. For two columns of ciphertext, we take all possibl

2-letter shift keywords that begin with 'a'aa, ab, .. ., az,

and perform GA search for the best primary alphabet for
each 2-letter shiff. These 26 searches can be performed in
parallel as a competitioh. Each of the 26 searches yields
a 2-letter shift keyword and an associated primary alphabet
Each of these 26 2-letter shift keywordsg,, and their asso-
ciated primary alphabets are used to initialize 26 GAs with
all possible 3-letter keywordsdsa, adsb, . .. ,ad2z. These

262 searches can be performed in parallel as a competition.
Each of the262 searches produces an optimal 3-letter shift
keyword,ad-d3, and an associated primary alphabet. These
then are used to initializ26> GA searches for the optimal
4-letter shift keyword and associated primary alphabet. Af
ter the 4-letter phase enough of the primary alphabet is re-
covered to allow the ciphertext to be broken in subsequent
phases.

Fitness M easure

For the two-column phase, a fithness measure based on bi-
gram frequencies is used to find the optimal composition
of 2-letter shifts and primary alphabet. The three-column

this fitness function is similar to the familiar Chi-squaestt
but it is faster to compute.

GA Search Details

All GA searches use populations of 2085 (x 8) individ-
uals. By using a multiple of 26 we get eight different pri-
mary alphabets for each of the 26 partial shift keys. This
appears to give enough initial variation to allow the seasch
to succeed. We use afitist strategy for selection, meaning
we keep only the fittest individuals, as well as for mutation,
meaning we keep only mutants that improve the pool. The
parameters that control the crossover and mutation rages ar
set to 0.9 and 0.5 respectively, which means that proposed
crosses between two individuals occur approximately 90%
of the time and that approximately half of the resulting new
individuals are mutated. Because our GA appears to give
reasonably good performance, we have not experimented
with these settings.

Each individual contains a representation of the primary
alphabet and the shift keyword. Initially, in phase 1, indliv
uals are given a random primary alphabet and one of the 26

phase uses trigram frequencies, and the four-column phasepossible 2-letter shift keywords. The initial primary adph
uses tetragram frequencies. The tetragram fithess measurebets are randomly generated permutations.of. z. During

is defined as follows:

ery: Z

ijkleC

1

tet
(igkl)

(12)

whereijkl represents a tetragram from the ciphert€tand

Tt is a table of relative tetragram frequencies for the lan-
guage in which the ciphertext is written. (Our language
statistics are derived from the bodkm Sawyerbut could

be based on any relevant text.) To compute the fitness of
the key, we compute the sum of the reciprocals of the corre-
sponding known frequencies for each of the tetragrams con-
tained in the decrypted message. The lower the value of
Fy.y the closer the decryption is to English plaintext. As we
have shown elsewhere (Morelli, Walde and Servos 2004),

2It is a well known characteristic of polyalphabetic ciphers that
neither the primary alphabet nor the shift keyword are unique. In-
stead they belong to a set of 26 pairs of keys, any pair of which
leads to the same encryption (Sinkov 1966). For any actual key-
word and primary alphabet, it is possible to reduce the shift key-
word to one beginning with 'a’ provided a similar reduction is
made to the primary alphabet. For example, the actual shift key-
word is “symbol” and the corresponding primary alphabetis
then the same ciphertext would be produced by the shift keyword
“tzncpm” associated with the alphabdt;, where A; is derived
from A, by shifting each letter by one, just as each letter in their
respective shift keywords is shifted by one. This relationship can
be expressed algebraically as follows:

C = S(A(P)) = S(sk(s26-k(A(P))))- 11
whereC andP are the ciphertext and plaintext respectivedyis
some periodic shiftA is the primary substitution alphabet, and
is a shift ofk letters.

3The use of parallel search here would not affect the outcome
of the search but merely its speed.

each generation of GA search, pairs of selected individuals
are mated by exchanging random portions of their respective
primary alphabets in such a way that a valid permutation of
a ...z is maintained in the offspring. Mutation of certain
offspring is performed by swapping two letters at random
in their primary alphabets. After the genetic operatiores ar
performed, the keys are used to decrypt a two-, three-, or
four-column portion of the message and the fitness of each
individual is measured. The fittest individuals are selgcte
to survive into the next generation.

Implementation and Testing

A fully parallel implementation of the algorithm described
in the preceding section would requi® processors.
Phase 1 uses only 26 of the processors and phase 2 uses only
262 processors. During each phase, each processor would
run a GA search for the optimal combination of primary al-
phabet and partial shift keyword. If all branches of the tree
in Figure 1 are explored, then after phase 4, the optimal can-
didate would clearly emerge. It will have the first four leste
correct in its shift keyword, and most of the mixed primary
alphabet will be recovered. This enables the algorithm to
find the best candidates for the full shift keyword in phase
5 and, given these, the complete primary alphabet can be
recovered.

Success with this algorithm can actually be achieved with
many fewer thar26 processors. At phase 2 the correct
2-letter keyword and associated primary alphabet will-typi
cally be in the top half of the distribution of top 2-letter GA
In phase 3, the correct candidate will typically be among the
top 5 candidates. In phase 4, the correct candidate is fre-
quently among the top two or three candidates.

In order to determine the amount of parallelism required
to guarantee the success of the search, we kept track of
where the correct shift keyword occurred among the 26 re-

sults at each phase. These results are summarized in Fig- Figure 3 summarizes the results. The horizontal axis
ure 2 for messages encrypted with peridod= 26. With represents the average column length of the encrypted
around 100 characters per column, the correct 2-letter shif messages—i.e., message length divided by period. The ver-
keyword was the best value found approximately 40% of the tical axis represents the percentage of times that the messa
time. The correct 3-letter shift keyword was the best value was completely decrypted. A score of 100% means that the
found approximately 60% of the time, and correct 4-letter both the shift keyword and the primary alphabet were com-
shift was the best value approximately 90% of the time. For pletely recovered in every case. A 50% success rate means
these same messages, the correct shifts were among the topthe algorithm was able to completely recover both keys in
5 best candidates identified by the GA approximately 60%, only half the cases. The lines in the graph represent ciphers
80%, and 95% of the times, respectively. Note that with 120 with different periods (5, 10, 20, or 26).

characters per column, the correct candidate in the 3lette
and 4-letter searches were among the top-5 best candidats
in close to 100% of the trials.

Figure 3. Analyzing Type II Cipher for Various Periods

120.00

Figure 2. How Often Was the Correct Partial Key Among Those)
With the Best Evaluation Score? 10000 / —
120% -

L

100% ///\
s 7 //./

80.00 /
60.00

—e—Period=5
Period=10

40.00

4 Period=20

Percentage of Complete Recoveries

60% /

40%

Period=26
/\ 20.00
3
Three Column (Best) —~_
Four Column (Best 0.00

20% Two Column (Best 5) 0.00 20.00 40.00 60.00 80.00 10000 120.00 140.00 160.00 180.00
o (—
Column Size (N/d)

—e— Two Column (Best)

Correct Candidate Was Best Candidate

—— Three Column (Best 5)
—e— Four Column (Best 5)

0%
0.00 2000 4000 60.00 8000 100.00 12000 14000 160.00
Column Length (N/d)

As expected, the results show clearly that success of the
algorithm depends on the column length. Regardless of the

period, good success rates were achieved starting at approx
The data in Figure 2 provide some basis on which to esti- imately 100 characters per column. Close to 100% success
mate the actual number of processors that would be neededwas achieved starting at around 120 characters per column.
for a practical implementation of the parallel algorithm. The success rate was much lower for messages with 60
With 26 x 5 processors, the correct partial shift keyword and or fewer characters per column. Again, however, success
primary alphabet would emerge from phase 4 at least 70% rate means the percentage of times that a message was com-
of the time for messages with a column length of at least 100 pletely decrypted. Given the stochastic nature of GAs, it
characters. would be necessary to perform multiple runs of the search in
] i order to break shorter messages. In our experiments, there
Simulation Strategy were very few messages, even those with relatively short
Because we did not have access to parallel processing re-column lengths, that wemeeversuccessfully decrypted, al-
sources, we ran a sequential simulation of the algorithm on though a message with a column length of 60 characters
a single processor. For phases 1-3, the simulation condlucte might be successfully decrypted only once or twice in six
26 GA searches and selected ttwrect 2-, 3-, or 4-letter attempts. We return to this point in the discussion.
shiftword prefix and its associated primary alphabet to pass
on to the next phase. This allowed us to guarantee that the Discussion
correct shift keyword prefix was being passed on to the next |, terms of computational effort, the sequential simulatio
phase. Of course, knowledge about the correct candidate jegcriped in the preceding section examined an average of
was not used in the actual GA searches. 2.5 million keys per message. Of course, because the sim-
. ulation uses the correct shifts at each phase, this is a very
Experimental Results optimistic lower bound on search cost. A fully-paralletize
The sequential simulation was tested on a total of 125 mes- implementation would utilize approximately 26 times more
sages, selected at random from the b@diker Twist rang- computation during phase 2 a@@ more computation dur-
ing in length from approximately 250 to 4000 characters, ing phase 3 of the search, which would lead to examination
with periods of length 5, 10, 20, and 26. Longer mes- of around 400 million keys per message. This would be the
sages (3000-4000 characters) were used with the longer pe-upper bound on search cost. As we described above, a prac-
riods. Shorter messages (250-500 characters) were usectical parallel search would require many fewer processors
with shorter periods. More than 750 test runs were made, and would be able to break messages by examining far fewer
approximately six runs per message. keys.

Although 400 million keys seems like a large search, it
represents a miniscule portion of the key space. For the full 1
parallel algorithm, the proportion of the key space exaihine
is less thari0~22 for a shift key of length 5 and is less than
10—#* for a shift key of length 20. This compares favorably
to the proportion of approximately0—2' for GA solutions
to simple substitution ciphers as described in an earliglyst
(Morelli, Walde and Servos 2004). Notice that for longer 3.
shift keys our algorithm requires a proportionally longer ¢
phertext to be successful but only the very efficient step 4 of 4
the algorithm requires additional computation.

Our experimental results compare favorably with other
ciphertext-only analyses of polyalphabetic ciphers. larC
roll and Robbins 1987) a Bayesian attack was used on a gen-
eral (not shifted) polyalphabetic cipher with a period of 3,
but 100% success was not achieved. In (Carroll and Rob-
bins 1989) limited success was achieved in the analysis of 6.
product ciphers consisting of the composition of substitut
and transposition steps. As noted there, the order in which
the operations are performed determined the difficulty ef th 7.
analysis.

In (Clark and Dawson 1997) a GA was used to success- g,
fully analyze a Vigenere cipher with a period of 3. A Vi-
genere cipher is much easier to break than a Type | cipher be-
cause its primary alphabet is not mixed. King (1994) used a
probabilistic relaxation technique to successfully d&ttaath
Vigenere and Type | ciphers. For Vigenere ciphers, 100%

9.

decryption was attained for periods up to 30 at around 12510.

150 characters per column. For Type | ciphers, probabilis-

tic relaxation was successful for periods up to 7 at aroundy 1 .

125-150 letters per column. Our approach gives comparable
results for the much more difficult Type Il ciphers. Because

King's approach does not appear to make any assumption%z'

about the order of the shift and substitute operations in cal
culating the probabilistic alphabets, it could likely be-ap
plied to Type Il ciphers. However, we would expect that the

results of that approach would be no better than our Type 1113.

results.

It is clear that what makes Type Il ciphers difficult to
break is the lack of a statistical measure or technique that
would allow the cryptanalyst to reverse the shifts.
cause the shifts are applied first, the monoalphabetic sub-
stitution step is being applied to a polyalphabetic cipher.
Therefore the technique must be capable of de-composing,
if you will, the product of two operations. One technique
that might apply here is thexpectation-maximization algo-
rithm, a maximum-likelihood estimation technique that has

been used successfully on problems such as separating sig7.

nal from noise (Moon 1996).

Plansfor the Future

A Type Il cipher with a period of 26 is equivalent to a single
rotor in a rotor machine that uses a random rotation scheme
(as opposed to an odometer-like scheme). We are currently
exploring whether our approach can be applied to the analy-
sis of a rotor machine with more than one rotor.

2. J. Carroll, L. Robbins.

5. B. Delman.

Be- 14.

16. R. Spillman.

References

F. L. Bauer.Decrypted Secrets: Methods and Maxims of
Cryptology Springer-Verlag, Berlin, 1997.

The automated cryptanalysis of
polyalphabetic ciphers. Cryptologig 11(4): 193-205,
1987.

J. Carroll, L. Robbins. Computer cryptanalysis of praduc
ciphers.Cryptologig 13(4): 303-326, 1989.

A. Clark, E. Dawson. A parallel genetic algorithm for
cryptanalysis of the polyalphabetic substitution cipher.
Cryptologig 21(2): 129-138, 1997.

Genetic algorithms in cryptography.
Master’s ThesisRIT: http://hdl.handle.net/1850/26, July
2004.

W. F. FriedmanThe Index of Coincidence and Its Appli-
cation in Cryptography. Riverbank Publication No. .22
Riverbank Labs, Geneva IL, 1920.

H. F. Gaines. Cryptanalysis: A Study of Ciphers and
Their Solution Dover Publications Inc., New York, 1939.

D. Kahn. The Codebreakerdviacmillan Co., New York,
1967.

J. C. King. An algorithm for the complete automated
cryptanalysis of periodic polyalphabetic substitution ci
phers.Cryptologig 18(4):332-355, 1994.

R. Matthews. The use of genetic algorithms in cryptanal-
ysis. Cryptologia 17(2):187-201, 1993.

T. K. Moon. The expectation-maximization algorithm.
IEEE Signal Processing Magazinsov. 1996.

R. Morelli, R. Walde, W. Servos. A study of heuris-
tic approaches for breaking short cryptogranisterna-
tional Journal on Artificial Intelligence Too)s13(1):45-
64, 2004.

R. Morelli, R. Walde. A word-based genetic algorithm
for cryptanalysis of short cryptogramsProceedings of
the 2003 Florida Al Rsch. Sym-L Al Research Soc.,
229-233, 2003.

F. Rubin. Designing a high security cipher.
http://www.contestcen.com/crypt003.htm, 1995.

15. A. Sinkov. Elementary Cryptanalysis Yale University

Press, New Haven, CT, 1966.

Cryptanalysis of knapsack ciphers using
genetic algorithmsCryptologig 17(4):367-377, 1993.

R. M. Spillman, B. Janssen, B. Nelson. Use of a ge-
netic algorithm in the cryptanalysis of simple substitatio
ciphers.Cryptologig 17(1):31-44, 1993.

