
Evolving Keys for Periodic Polyalphabetic Ciphers

Ralph Morelli and Ralph Walde
Computer Science Department

Trinity College
Hartford, CT 06106

ralph.morelli@trincoll.edu

Abstract

A genetic algorithm is used to find the keys of Type
II periodic polyalphabetic ciphers with mixed primary
alphabets. Because of the difficulty of the ciphertext
only cryptanalysis for Type II ciphers, a multi-phased
search strategy is used, each phase of which recovers a
bigger portion of the key.

Introduction
A periodic polyalphabetic cipherwith periodd encrypts a
plaintextmessage intociphertextby replacing each plaintext
letter with a letter from one ofd substitution alphabets. The
d alphabets are typically selected from a sequence of related
alphabets that is repeated as often as necessary to encrypt
the message.

In polyalphabetic encryption a message is broken intod
columns, each encrypted by a different alphabet. The longer
the period,d—the more alphabets used–the more difficult it
is to unscramble the message.

Ciphertext only cryptanalysisis the process of recovering
the plaintext directly from the ciphertext message without
access to the message key. The search space for this type of
problem is much too large for brute force approaches. For
a polyalphabetic cipher with a 26-letter alphabet and period
d the key space contains26! × 26d−1 possible keys. That
gives approximately1032 keys for a period of length 5 and
1053 keys for a period of length 20.

Several studies have used the genetic algorithm (GA) suc-
cessfully in ciphertext only cryptanalysis (Clark and Daw-
son 1997, Matthews 1993, Morelli, Walde and Servos 2004,
Morelli and Walde 2003, Spillman 1993 and Spillman,
Janssen and Nelson 1993). Delman (2004) provides a recent
study that compares various efforts to apply GAs cryptogra-
phy. GA approaches evolve the message key(s) by repeat-
edly decrypting the message and measuring how close the
resulting text is to plaintext.

For polyalphabetic ciphers, the search is made more diffi-
cult by the fact that each letter in two-letter (bigram), three-
letter (trigram), or four-letter (tetragram) sequences is en-
crypted from a different alphabet. In this study, we show
that a collection of GAs working in parallel can be used to

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

recover increasingly longer portions of the key. As described
more fully in the discussion, our results compare favorably
to other approaches reported in the literature.

Polyalphabetic Ciphers
Following (King 1994), a polyalphabetic cipher can be de-
fined as follows. Givend cipher alphabetsC1 . . . Cd, let
gi : A → Ci be a mapping from the plaintext alphabetA to
theith cipher alphabetCi(1 ≤ i ≤ d). A plaintext message
M = m1 . . . mdmd+1 . . . m2d . . . is enciphered by repeat-
ing the sequence of mappingsg1, . . . , gd everyd characters,
giving

E(M) = g1(m1) . . . gd(md)g1(md+1) . . . gd(m2d) . . . (1)

Although in the most general case the cipher alphabets are
completely unrelated, in many classical polyalphabetic ci-
phers the alternative alphabetsC2, ..., Cd are shifted ver-
sions of the mixed primary cipher alphabet,C1. Thus, in
addition to themixed primary alphabet, C1, a second key,
theshift keyword, is used to specify both the period and the
shifts used to generate the other cipher alphabets, with ’a’
representing a shift of 0, ’b’ a shift of 1, and so on.1

In shifted polyalphabetic ciphers, the alternative alphabets
are derived by performing a shift modulo 26 on each letter
of the mixed primary alphabet. In the following example,
the second alphabet is derived form the first by shifting each
of its letters by one modulo 26:

z e r o s u m g a b c d f h i j k l n p q t v w x y

a f s p t v n h b c d e g i j k l m o q r u w x y z

In this case the primary alphabet is a simple substitution al-
phabet generated from the primary keywordzerosumgame.

Thus, a polyalphabetic cipher with shifted alphabets en-
cryption can be represented as the composition, or product,
of two operations: a substitution step, to create the mixed
primary alphabet, and a shift step, to derive a secondary
alphabets. Substitution involves replacing a plaintext letter

1This type of cipher, which is sometimes called adouble-key
cipher, was first introduced in the 15th century by Alberti and ex-
tended with contributions by Trithemius, Belaso, Porta, and Vi-
genere. Such ciphers have been well studied, both from an histor-
ical perspective (Kahn 1967, Bauer 1997) and as the basis behind
secure, contemporary ciphers (Rubin 1995).



with the corresponding letter from the mixed primary alpha-
bet. The shift step involves shifting a letter by an arbitrary
amount (modulo 26).

The order of these operations is significant and leads to
two different ciphers known as Type I and Type II (Gaines
1939). In Type I, where substitution is performed first, the
encryption and decryption operations can be represented as:

cj = gi(mj) = (C1(mj) + ki)(mod26) (2)

mj = g−1
i (cj) = C−1

1 ((cj + 26− ki)(mod26)) (3)

whereC1(mj) represents substitution of thejth plaintext
character,mj , from the primary cipher alphabetC1 andki

represents the shift of the resulting ciphertext letter. Inde-
cryption the inverse operations are applied.

In Type II the shift step is performed before substitution,
leading to the following encryption and decryption opera-
tions:

cj = gi(mj) = C1((mj + ki)(mod26)) (4)

mj = g−1
i (cj) = (C−1

1 (cj) + 26− ki)(mod26) (5)

A familiar way to represent a set of shifted alphabets is to use
a Vigenere tableau, in which the mixed primary alphabet,
C1, is placed in the first row and alternative alphabets are
placed in successive rows. The following table corresponds
to a Type I cipher:

Plaintext

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A: z e r o s u m g a b c d f h i j k l n p q t v w x y

K B: a f s p t v n h b c d e g i j k l m o q r u w x y z

E C: b g t q u w o i c d e f h j k l m n p r s v x y z a

Y . Ciphertext

Z: y d q n r t l f z a b c e g h i j k m o p s u v w x

The rows of the table represent the shifted alphabets. For
example, the shift keywordSYMBOLwould select the fol-
lowing alphabets from the above table:

Plaintext

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

S: r w j g k m e y s t u v x z a b c d f h i l n o p q

Y: x c p m q s k e y z a b d f g h i j l n o r t u v w

K M: l q d a e g y s m n o p r t u v w x z b c f h i j k

E B: a f s p t v n h b c d e g i j k l m o q r u w x y z

Y O: n s f c g i a u o p q r t v w x y z b d e h j k l m

L: k p c z d f x r l m n o q s t u v w y a b e g h i j

To encrypt the word “the” using the above table, we re-
place ’t’ with its corresponding letter from theS alphabet.
This is equivalent to replacing ’t’ by ’p’ from the mixed pri-
mary alphabet and then shifting ’p’ bysplaces (modulo 26).
In either case, ’t’ is encrypted as ’h’. The word “the” would
be encrypted as “hee.”

The table corresponding to a Type II cipher would be rep-
resented as follows:

Plaintext

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A: z e r o s u m g a b c d f h i j k l n p q t v w x y

K B: e r o s u m g a b c d f h i j k l n p q t v w x y z

E C: r o s u m g a b c d f h i j k l n p q t v w x y z e

Y .

S: n p q t v w x y z e r o s u m g a b c d f h i j k l

Y: x y z e r o s u m g a b c d f h i j k l n p q t v w

M: f h i j k l n p q t v w x y z e r o s u m g a b c d

.

Z: y z e r o s u m g a b c d f h i j k l n p q t v w x

To encrypt “the” using the shift keyword SYMBOL, we
would select the corresponding letters from theS, Y, andM
rows, giving “duk”. This is equivalent to taking a letter, say
’t’, shifting it by, say s, giving ’l’, and replacing the result
with the corresponding letter from theC1 alphabet, giving
’d’.

Index of Coincidence
Type II ciphers are much more difficult to analyze than Type
I. To show this it is necessary to describe theIndex of Coin-
cidence. The IC is a measure used to distinguish text that has
been encrypted with a polyalphabetic cipher from plaintext
or from text that was encrypted with a single alphabet. First
described by (Friedman 1920), the IC is the probability that
two symbols chosen at random from a text will be equiva-
lent. For a text of lengthN written in the standard alphabet,
A . . . Z, wheref represents character frequencies, the IC is
expressed as:

IC =

∑
i=A,Z

fi(fi−1)

N(N−1). (6)

As Friedman showed, the IC value for English plaintext and
for a simple substitution cipher will be around 0.066. Text
encrypted by a polyalphabetic substitution cipher would
have an IC value less than 0.066 depending on the number
of alphabets used. Polyalphabetics with periods greater than
10 would have IC values that approach 0.038.

Finding the Period
Regardless of whether Type I or Type II encryption was used
in creating a ciphertext, the IC can be used to find the ci-
pher’s period by performing an exhaustive search on each
possible period from 1 to some maximum length. For each
possible period,di, the plaintext is broken intodi columns
and the IC is computed for each column. Ifdi is the cor-
rect period, the average IC of thedi columns will be close to
0.066. If none of the values get close enough to 0.066, we
take thedi associated with the highest IC value. While this
algorithm is not guaranteed to find the correct period, we
found it to be successful in nearly 100 percent of the cases.

Type I versus Type II Cryptanalysis
Once the cipher’s period is known, cryptanalysis of a Type
I cipher is very straightforward. Consider the following de-
piction of Type I encryption (substitution then shift):

P0.066 ⇒ C1
0.066 → C2

0.038 (7)

When plaintextP, which has an IC of 0.066, is replaced by
substitution (⇒) from the mixed primary alphabet, the re-
sulting ciphertext,C1, will have an IC value approximately



equal to plaintext (IC ≈ 0.066). When the ciphertext
is then shifted (→), resulting in a new ciphertext,C2, its
IC value will be characteristic of a polyalphabetic cipher
(IC ≈ 0.038).

Given this characterization of a Type I cipher, it is easy to
see that the following strategy can be used to break Type I
messages:

P0.066 ⇐ C1
0.066 ← C2

0.038 (8)

In other words, when the correct reverse shifts (←) are ap-
plied to the ciphertext, the result will be a ciphertext withan
IC value characteristic of a simple substitution cipher. The
IC can be used on the intermediate cipher text,C1, to de-
termine when the correct reverse shifts have been applied.
Thus, the shift keyword for a Type I cipher can be recov-
ered by trying all possible reverse shifts. The correct set of
reverse shifts will produce a simple substitution ciphertext,
C1 whose IC value will be close to 0.066. Analysis of the
recovered simple substitution ciphertext,C1, will lead to re-
covery of the mixed primary alphabet, which can then be
applied (⇐) to recover the plaintext.

By contrast, the model for Type II encryption is as fol-
lows:

P0.066 → C3
0.038 ⇒ C4

0.066 (9)

In this case, the shifts are applied first (→), resulting in ci-
phertext that is polyalphabetic (IC ≈ 0.038). The shifted
text is then replaced using the mixed primary alphabet (⇒),
leading to ciphertext that is now the result of the product of
two operations.

Viewed thusly, it is clear that one way to break Type II
would be first to recover and apply the primary key (⇐) and
use it to recover and apply the shift keyword (←):

P0.066 ← C3
0.038 ⇐ C4

0.038 (10)

However, this approach will not work because there is no ef-
fective way to determine the mixed primary alphabet solely
by analyzing the intermediate ciphertext,C3. Neither the IC
nor any other statistical measure provides a means to iden-
tify the correct primary key independently of the shift key-
word.

Therefore, to cryptanalyze Type II ciphers we need a strat-
egy that composes both the substitution and shift steps in re-
verse order, so that the IC of the resulting text will approach
that of plaintext (0.066).

A Multi-Phase GA Approach
Our approach for breaking Type II ciphers uses a multi-
phase, genetic algorithm (GA) as the basic search mecha-
nism. Once the correct period,d, is found, the ciphertext is
divided intod columns. The letters in a given column have
all been encrypted from the same alphabet. Moreover, the
alphabets used to encrypt adjacent columns are related to
each other by means of some shift,a to z.

Thus, once the correct period is found, we perform GA
search on two, then three, then four adjacent columns of ci-
phertext. At each phase we generate a partial decryption of
the columns by composing the shift and substitution steps
(← + ⇐). This leads to the recovery of increasingly larger
portions of both the shift keyword and the primary (substitu-
tion) alphabet. After completion of the four-column phase,
the GA has recovered enough of the primary substitution
alphabet to allow full recovery of the message. Thus, our
approach goes through the following phases:

0 Determine the period,d, of the ciphertext.

1 For columns 1-2 of the ciphertext, use GA search to find
the best 2-letter shift keyword and primary alphabet com-
positions.

2 Given results from phase 1, use GA search to find the best
3-letter shift keyword and primary alphabet compositions
for columns 1-3 .

3 Given results from phase 2, use GA search to find the best
4-letter shift keyword and primary alphabet compositions
for columns 1-4.

4 Given the partially correct primary alphabet from the pre-
vious step, find the best candidate shift keywords of length
d.

5 Given the best candidate shift keywords, use GA search to
find the best shift keyword/primary alphabet composition.

After phase 5, the ciphertext has been reduced to a simple
substitution cipher, which can easily be solved.

Figure 1: Multi-phase GA search on a Type II cipher with
the primary alphabetabc...zand shift keywordabbcf.

Figure 1 provides a more detailed depiction of the search
strategy. For two columns of ciphertext, we take all possible



2-letter shift keywords that begin with ’a’:aa, ab, . . . , az,
and perform GA search for the best primary alphabet for
each 2-letter shift.2 These 26 searches can be performed in
parallel as a competition.3 Each of the 26 searches yields
a 2-letter shift keyword and an associated primary alphabet.
Each of these 26 2-letter shift keywords,aδ2, and their asso-
ciated primary alphabets are used to initialize 26 GAs with
all possible 3-letter keywords,aδ2a, aδ2b, . . . , aδ2z. These
262 searches can be performed in parallel as a competition.
Each of the262 searches produces an optimal 3-letter shift
keyword,aδ2δ3, and an associated primary alphabet. These
then are used to initialize263 GA searches for the optimal
4-letter shift keyword and associated primary alphabet. Af-
ter the 4-letter phase enough of the primary alphabet is re-
covered to allow the ciphertext to be broken in subsequent
phases.

Fitness Measure
For the two-column phase, a fitness measure based on bi-
gram frequencies is used to find the optimal composition
of 2-letter shifts and primary alphabet. The three-column
phase uses trigram frequencies, and the four-column phase
uses tetragram frequencies. The tetragram fitness measure
is defined as follows:

Fkey =
∑

ijkl∈C

1

T tet
(ijkl)

. (12)

whereijkl represents a tetragram from the ciphertext,C, and
T tet is a table of relative tetragram frequencies for the lan-
guage in which the ciphertext is written. (Our language
statistics are derived from the bookTom Sawyer, but could
be based on any relevant text.) To compute the fitness of
the key, we compute the sum of the reciprocals of the corre-
sponding known frequencies for each of the tetragrams con-
tained in the decrypted message. The lower the value of
Fkey the closer the decryption is to English plaintext. As we
have shown elsewhere (Morelli, Walde and Servos 2004),

2It is a well known characteristic of polyalphabetic ciphers that
neither the primary alphabet nor the shift keyword are unique. In-
stead they belong to a set of 26 pairs of keys, any pair of which
leads to the same encryption (Sinkov 1966). For any actual key-
word and primary alphabet, it is possible to reduce the shift key-
word to one beginning with ’a’ provided a similar reduction is
made to the primary alphabet. For example, the actual shift key-
word is “symbol” and the corresponding primary alphabet isAi,
then the same ciphertext would be produced by the shift keyword
“tzncpm” associated with the alphabetAj , whereAj is derived
from Ai by shifting each letter by one, just as each letter in their
respective shift keywords is shifted by one. This relationship can
be expressed algebraically as follows:

C = S(A(P )) = S(sk(s26−k(A(P )))). (11)

whereC andP are the ciphertext and plaintext respectively,S is
some periodic shift,A is the primary substitution alphabet, andsk

is a shift ofk letters.
3The use of parallel search here would not affect the outcome

of the search but merely its speed.

this fitness function is similar to the familiar Chi-square test,
but it is faster to compute.

GA Search Details
All GA searches use populations of 208 (26 × 8) individ-
uals. By using a multiple of 26 we get eight different pri-
mary alphabets for each of the 26 partial shift keys. This
appears to give enough initial variation to allow the searches
to succeed. We use anelitist strategy for selection, meaning
we keep only the fittest individuals, as well as for mutation,
meaning we keep only mutants that improve the pool. The
parameters that control the crossover and mutation rates are
set to 0.9 and 0.5 respectively, which means that proposed
crosses between two individuals occur approximately 90%
of the time and that approximately half of the resulting new
individuals are mutated. Because our GA appears to give
reasonably good performance, we have not experimented
with these settings.

Each individual contains a representation of the primary
alphabet and the shift keyword. Initially, in phase 1, individ-
uals are given a random primary alphabet and one of the 26
possible 2-letter shift keywords. The initial primary alpha-
bets are randomly generated permutations ofa . . . z. During
each generation of GA search, pairs of selected individuals
are mated by exchanging random portions of their respective
primary alphabets in such a way that a valid permutation of
a . . . z is maintained in the offspring. Mutation of certain
offspring is performed by swapping two letters at random
in their primary alphabets. After the genetic operations are
performed, the keys are used to decrypt a two-, three-, or
four-column portion of the message and the fitness of each
individual is measured. The fittest individuals are selected
to survive into the next generation.

Implementation and Testing
A fully parallel implementation of the algorithm described
in the preceding section would require263 processors.
Phase 1 uses only 26 of the processors and phase 2 uses only
262 processors. During each phase, each processor would
run a GA search for the optimal combination of primary al-
phabet and partial shift keyword. If all branches of the tree
in Figure 1 are explored, then after phase 4, the optimal can-
didate would clearly emerge. It will have the first four letters
correct in its shift keyword, and most of the mixed primary
alphabet will be recovered. This enables the algorithm to
find the best candidates for the full shift keyword in phase
5 and, given these, the complete primary alphabet can be
recovered.

Success with this algorithm can actually be achieved with
many fewer than263 processors. At phase 2 the correct
2-letter keyword and associated primary alphabet will typi-
cally be in the top half of the distribution of top 2-letter GAs.
In phase 3, the correct candidate will typically be among the
top 5 candidates. In phase 4, the correct candidate is fre-
quently among the top two or three candidates.

In order to determine the amount of parallelism required
to guarantee the success of the search, we kept track of
where the correct shift keyword occurred among the 26 re-



sults at each phase. These results are summarized in Fig-
ure 2 for messages encrypted with periodd = 26. With
around 100 characters per column, the correct 2-letter shift
keyword was the best value found approximately 40% of the
time. The correct 3-letter shift keyword was the best value
found approximately 60% of the time, and correct 4-letter
shift was the best value approximately 90% of the time. For
these same messages, the correct shifts were among the top-
5 best candidates identified by the GA approximately 60%,
80%, and 95% of the times, respectively. Note that with 120
characters per column, the correct candidate in the 3-letter
and 4-letter searches were among the top-5 best candidates
in close to 100% of the trials.

The data in Figure 2 provide some basis on which to esti-
mate the actual number of processors that would be needed
for a practical implementation of the parallel algorithm.
With 26×5 processors, the correct partial shift keyword and
primary alphabet would emerge from phase 4 at least 70%
of the time for messages with a column length of at least 100
characters.

Simulation Strategy
Because we did not have access to parallel processing re-
sources, we ran a sequential simulation of the algorithm on
a single processor. For phases 1-3, the simulation conducted
26 GA searches and selected thecorrect 2-, 3-, or 4-letter
shiftword prefix and its associated primary alphabet to pass
on to the next phase. This allowed us to guarantee that the
correct shift keyword prefix was being passed on to the next
phase. Of course, knowledge about the correct candidate
was not used in the actual GA searches.

Experimental Results
The sequential simulation was tested on a total of 125 mes-
sages, selected at random from the bookOliver Twist, rang-
ing in length from approximately 250 to 4000 characters,
with periods of length 5, 10, 20, and 26. Longer mes-
sages (3000-4000 characters) were used with the longer pe-
riods. Shorter messages (250-500 characters) were used
with shorter periods. More than 750 test runs were made,
approximately six runs per message.

Figure 3 summarizes the results. The horizontal axis
represents the average column length of the encrypted
messages—i.e., message length divided by period. The ver-
tical axis represents the percentage of times that the message
was completely decrypted. A score of 100% means that the
both the shift keyword and the primary alphabet were com-
pletely recovered in every case. A 50% success rate means
the algorithm was able to completely recover both keys in
only half the cases. The lines in the graph represent ciphers
with different periods (5, 10, 20, or 26).

As expected, the results show clearly that success of the
algorithm depends on the column length. Regardless of the
period, good success rates were achieved starting at approx-
imately 100 characters per column. Close to 100% success
was achieved starting at around 120 characters per column.

The success rate was much lower for messages with 60
or fewer characters per column. Again, however, success
rate means the percentage of times that a message was com-
pletely decrypted. Given the stochastic nature of GAs, it
would be necessary to perform multiple runs of the search in
order to break shorter messages. In our experiments, there
were very few messages, even those with relatively short
column lengths, that wereneversuccessfully decrypted, al-
though a message with a column length of 60 characters
might be successfully decrypted only once or twice in six
attempts. We return to this point in the discussion.

Discussion
In terms of computational effort, the sequential simulation
described in the preceding section examined an average of
2.5 million keys per message. Of course, because the sim-
ulation uses the correct shifts at each phase, this is a very
optimistic lower bound on search cost. A fully-parallelized
implementation would utilize approximately 26 times more
computation during phase 2 and262 more computation dur-
ing phase 3 of the search, which would lead to examination
of around 400 million keys per message. This would be the
upper bound on search cost. As we described above, a prac-
tical parallel search would require many fewer processors
and would be able to break messages by examining far fewer
keys.



Although 400 million keys seems like a large search, it
represents a miniscule portion of the key space. For the full
parallel algorithm, the proportion of the key space examined
is less than10−23 for a shift key of length 5 and is less than
10−44 for a shift key of length 20. This compares favorably
to the proportion of approximately10−21 for GA solutions
to simple substitution ciphers as described in an earlier study
(Morelli, Walde and Servos 2004). Notice that for longer
shift keys our algorithm requires a proportionally longer ci-
phertext to be successful but only the very efficient step 4 of
the algorithm requires additional computation.

Our experimental results compare favorably with other
ciphertext-only analyses of polyalphabetic ciphers. In (Car-
roll and Robbins 1987) a Bayesian attack was used on a gen-
eral (not shifted) polyalphabetic cipher with a period of 3,
but 100% success was not achieved. In (Carroll and Rob-
bins 1989) limited success was achieved in the analysis of
product ciphers consisting of the composition of substitution
and transposition steps. As noted there, the order in which
the operations are performed determined the difficulty of the
analysis.

In (Clark and Dawson 1997) a GA was used to success-
fully analyze a Vigenere cipher with a period of 3. A Vi-
genere cipher is much easier to break than a Type I cipher be-
cause its primary alphabet is not mixed. King (1994) used a
probabilistic relaxation technique to successfully attack both
Vigenere and Type I ciphers. For Vigenere ciphers, 100%
decryption was attained for periods up to 30 at around 125-
150 characters per column. For Type I ciphers, probabilis-
tic relaxation was successful for periods up to 7 at around
125-150 letters per column. Our approach gives comparable
results for the much more difficult Type II ciphers. Because
King’s approach does not appear to make any assumptions
about the order of the shift and substitute operations in cal-
culating the probabilistic alphabets, it could likely be ap-
plied to Type II ciphers. However, we would expect that the
results of that approach would be no better than our Type II
results.

It is clear that what makes Type II ciphers difficult to
break is the lack of a statistical measure or technique that
would allow the cryptanalyst to reverse the shifts. Be-
cause the shifts are applied first, the monoalphabetic sub-
stitution step is being applied to a polyalphabetic cipher.
Therefore the technique must be capable of de-composing,
if you will, the product of two operations. One technique
that might apply here is theexpectation-maximization algo-
rithm, a maximum-likelihood estimation technique that has
been used successfully on problems such as separating sig-
nal from noise (Moon 1996).

Plans for the Future

A Type II cipher with a period of 26 is equivalent to a single
rotor in a rotor machine that uses a random rotation scheme
(as opposed to an odometer-like scheme). We are currently
exploring whether our approach can be applied to the analy-
sis of a rotor machine with more than one rotor.

References
1. F. L. Bauer.Decrypted Secrets: Methods and Maxims of

Cryptology. Springer-Verlag, Berlin, 1997.

2. J. Carroll, L. Robbins. The automated cryptanalysis of
polyalphabetic ciphers. Cryptologia, 11(4): 193-205,
1987.

3. J. Carroll, L. Robbins. Computer cryptanalysis of product
ciphers.Cryptologia, 13(4): 303-326, 1989.

4. A. Clark, E. Dawson. A parallel genetic algorithm for
cryptanalysis of the polyalphabetic substitution cipher.
Cryptologia, 21(2): 129-138, 1997.

5. B. Delman. Genetic algorithms in cryptography.
Master’s Thesis, RIT: http://hdl.handle.net/1850/26, July
2004.

6. W. F. Friedman.The Index of Coincidence and Its Appli-
cation in Cryptography. Riverbank Publication No. 22.
Riverbank Labs, Geneva IL, 1920.

7. H. F. Gaines. Cryptanalysis: A Study of Ciphers and
Their Solution. Dover Publications Inc., New York, 1939.

8. D. Kahn. The Codebreakers. Macmillan Co., New York,
1967.

9. J. C. King. An algorithm for the complete automated
cryptanalysis of periodic polyalphabetic substitution ci-
phers.Cryptologia, 18(4):332-355, 1994.

10. R. Matthews. The use of genetic algorithms in cryptanal-
ysis. Cryptologia, 17(2):187-201, 1993.

11. T. K. Moon. The expectation-maximization algorithm.
IEEE Signal Processing Magazine, Nov. 1996.

12. R. Morelli, R. Walde, W. Servos. A study of heuris-
tic approaches for breaking short cryptograms.Interna-
tional Journal on Artificial Intelligence Tools, 13(1):45-
64, 2004.

13. R. Morelli, R. Walde. A word-based genetic algorithm
for cryptanalysis of short cryptograms.Proceedings of
the 2003 Florida AI Rsch. Symp.FL AI Research Soc.,
229-233, 2003.

14. F. Rubin. Designing a high security cipher.
http://www.contestcen.com/crypt003.htm, 1995.

15. A. Sinkov. Elementary Cryptanalysis. Yale University
Press, New Haven, CT, 1966.

16. R. Spillman. Cryptanalysis of knapsack ciphers using
genetic algorithms.Cryptologia, 17(4):367-377, 1993.

17. R. M. Spillman, B. Janssen, B. Nelson. Use of a ge-
netic algorithm in the cryptanalysis of simple substitution
ciphers.Cryptologia, 17(1):31-44, 1993.


