

Support Vector Machines: Brief Overview

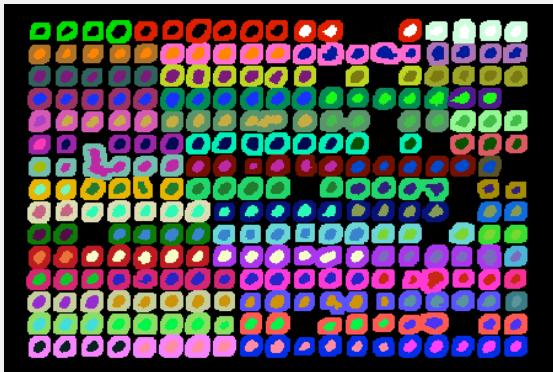
Outline

- Microarray Example
- Support Vector Machines (SVMs)
- Software: libsvm
- A Baseball Example with libsvm

Classifying Cancer Tissue: The ALL/AML Dataset

- Golub *et al.* (1999), Guyon *et al.* (2002): Affymetrix microarrays containing probes for 7,129 human genes.
- Scores on microarray represent intensity of gene expression after being re-scaled to make each chip equivalent.
- Training Data: 38 bone marrow samples, 27 acute lymphoblastic leukemia (ALL), 11 acute myeloid leukemia (AML).
- Test Data: 34 samples, 20 ALL and 14 AML.
- Our Experiment: Use LIBSVM to analyze the data set.

ML Experiment



Microarray Image File

training
data

testing
data

```
0.0 1:154 2:72 3:81 4:650 5:698 6:5199 7:1397 8:216 9:71 10:22
0.0 1:154 2:96 3:58 4:794 5:665 6:5328 7:1574 8:263 9:98 10:37
1.0 1:154 2:98 3:56 4:857 5:642 6:5196 7:1574 8:300 9:95 10:35
0.0 1:154 2:72 3:81 4:650 5:698 6:5199 7:1397 8:216 9:71 10:22
0.0 1:154 2:72 3:81 4:650 5:698 6:5199 7:1397 8:216 9:71 10:22
0.0 1:154 2:72 3:81 4:650 5:698 6:5199 7:1397 8:216 9:71 10:22
0.0 1:154 2:72 3:81 4:650 5:698 6:5199 7:1397 8:216 9:71 10:22
0.0 1:154 2:96 3:58 4:794 5:665 6:5328 7:1574 8:263 9:98 10:37
1.0 1:154 2:98 3:56 4:857 5:642 6:5196 7:1574 8:300 9:95 10:35
1.0 1:154 2:98 3:56 4:857 5:642 6:5196 7:1574 8:300 9:95 10:35
0.0 1:154 2:72 3:81 4:650 5:698 6:5199 7:1397 8:216 9:71 10:22
0.0 1:154 2:72 3:81 4:650 5:698 6:5199 7:1397 8:216 9:71 10:22
0.0 1:154 2:72 3:81 4:650 5:698 6:5199 7:1397 8:216 9:71 10:22
0.0 1:154 2:96 3:58 4:794 5:665 6:5328 7:1574 8:263 9:98 10:37
1.0 1:154 2:98 3:56 4:857 5:642 6:5196 7:1574 8:300 9:95 10:35
...
1.0 1:154 2:98 3:56 4:857 5:642 6:5196 7:1574 8:300 9:95 10:35
0.0 1:154 2:72 3:81 4:650 5:698 6:5199 7:1397 8:216 9:71 10:22
0.0 1:154 2:72 3:81 4:650 5:698 6:5199 7:1397 8:216 9:71 10:22
0.0 1:154 2:72 3:81 4:650 5:698 6:5199 7:1397 8:216 9:71 10:22
0.0 1:154 2:96 3:58 4:794 5:665 6:5328 7:1574 8:263 9:98 10:37
1.0 1:154 2:98 3:56 4:857 5:642 6:5196 7:1574 8:300 9:95 10:35
```

Labeled Data File

ALL/AML gene₁:intensity₁
0.0 1: 0.852272

gene₂:intensity₂
2: 0.273378

gene₃:intensity₃ ...
3: 0.198784

Labeled Data

- **Training data:** Associates each *feature vector* of data (X_i) with its known classification (y_i):

$$(X_1, y_1), (X_2, y_2), \dots, (X_p, y_p)$$

where each X_i is a d -dimensional vector of real numbers and each y_i is classification label (1, -1) or (1, 0).

- Example ($p=3$):

0.0	1:154	2:72	3:81	4:650	5:698	6:5199	7:1397	8:216	9:71	10:22
0.0	1:154	2:96	3:58	4:794	5:665	6:5328	7:1574	8:263	9:98	10:37
1.0	1:154	2:98	3:56	4:857	5:642	6:5196	7:1574	8:300	9:95	10:35

Classification
Labels

Feature Vectors
($d=10$ attribute:value pairs)

Training and Testing

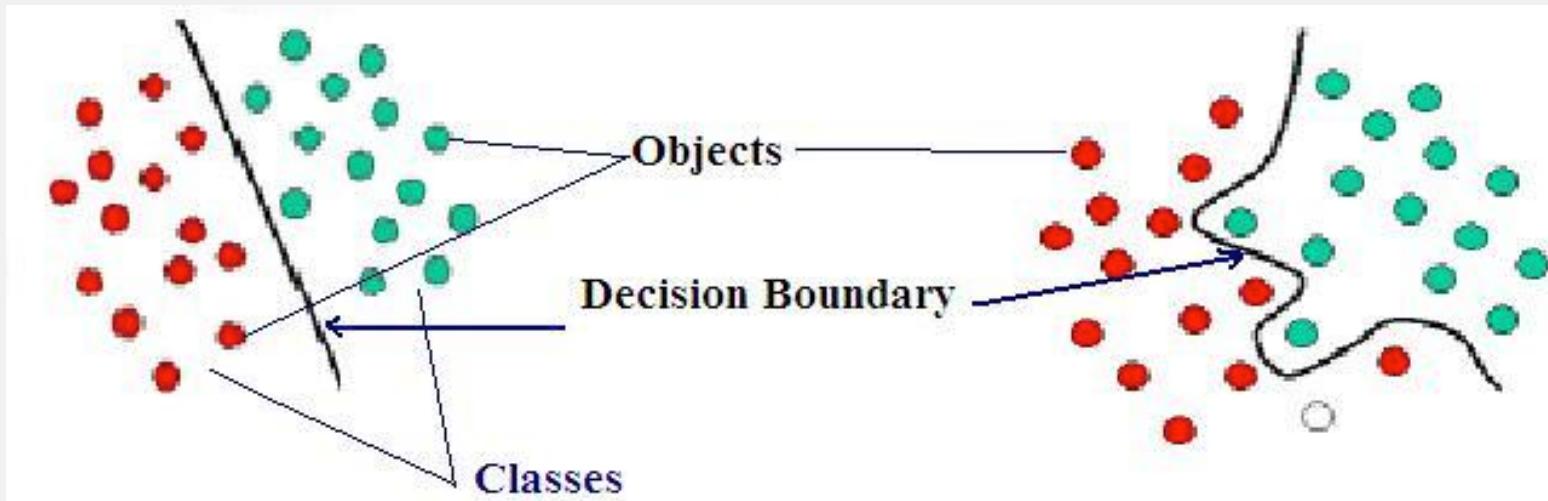
- **Scaling:** Data can be scaled, as needed to reduce the effect of variance among the features.
- **Five-fold Cross Validation (CV):**
 - Select a 4/5 subset of the training data.
 - Train a model and test on the remaining 1/5.
 - Repeat 5 times and choose the best model.
- **Test Data:** Same format as training data. Labels are used to calculate success rate of predictions.
- **Experimental Design:**
 - Divide it into training set and testing set.
 - Create the model on the training set.
 - Test the model on the test data.

ALL/AML Results

Approach	Training/Testing Details	Training Accuracy	Testing Accuracy
LIBSVM Saroj & Morelli	<ul style="list-style-type: none">• 5-fold cross validation• RBF Kernel• All 7129 features.	36/38 (94.7 %)	28/34 (82.4 %)
Weighted Voting Golub <i>et al.</i> (1999)	<ul style="list-style-type: none">• Hold-out-one cross validation• Informative genes cast weighted votes• 50 informative genes	36/38 (94.7 %)	29/34 (85.3 %) (prediction strength > 0.3)
Weighted Voting Slonim <i>et al.</i> (2000)	<ul style="list-style-type: none">• 50 gene predictor• cross-validation with prediction strength > 0.3 cutoff at 0.3	36/38 (94.7 %)	29/34 (85.3%)
SVM Furey <i>et al.</i> 2000	<ul style="list-style-type: none">• Hold-out-one cross validation• Top ranked 25, 250, 500, 1000 features• Linear Kernel plus Diagonal Factor	100 %	From 30/34 to 32/34 (88 % - 94 %)

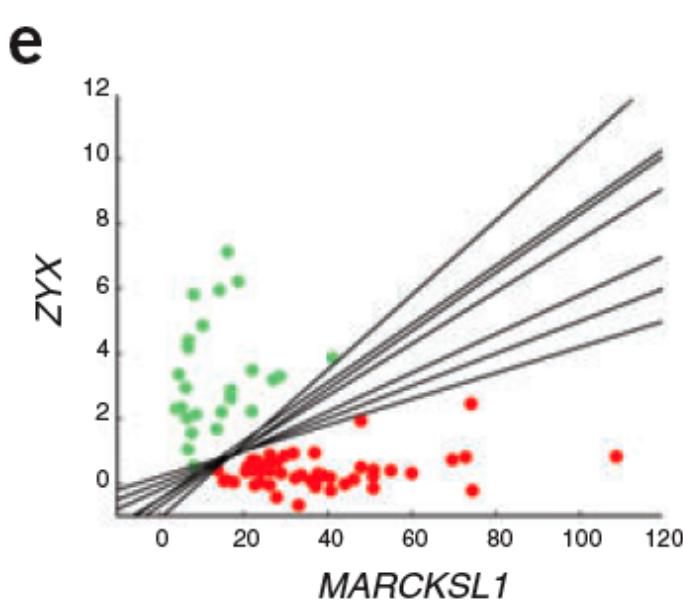
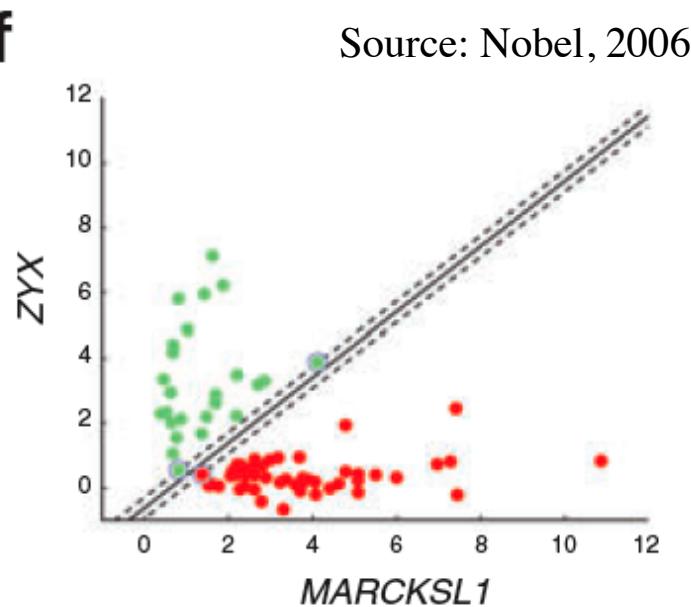
Support Vector Machine (SVM)

- SVM: Uses (*supervised*) machine learning to solve classification and regression problems.
- Classification Problem: Train a model that will classify input data into two or more distinct classes.
- Training: Find a decision boundary (a *hyperplane*) that divides the data into two or more classes.



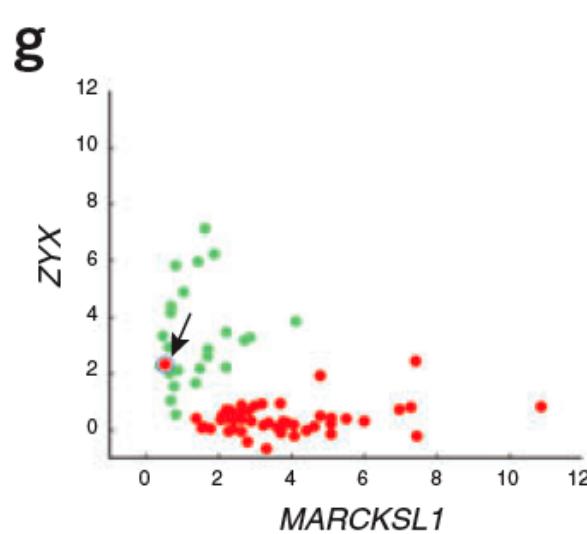
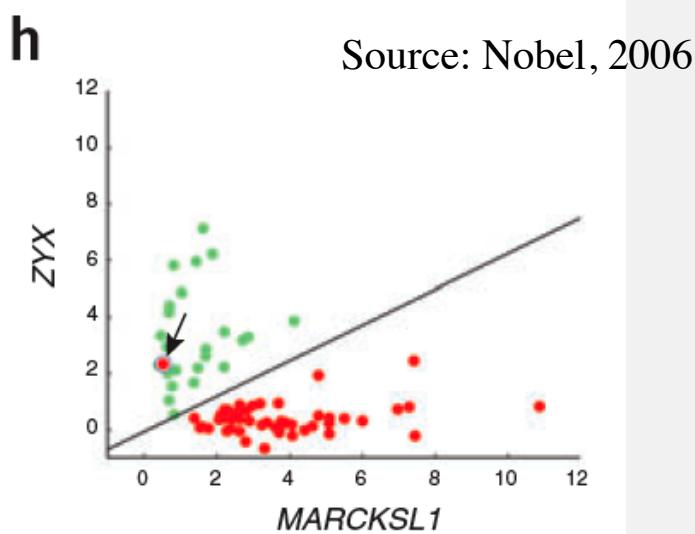
Maximum-Margin Hyperplane

- ***Linearly separable*** case: A line (hyperplane) exists that separates the data into two distinct classes.
- An SVM finds the separating plane that ***maximizes*** the distance between distinct classes.



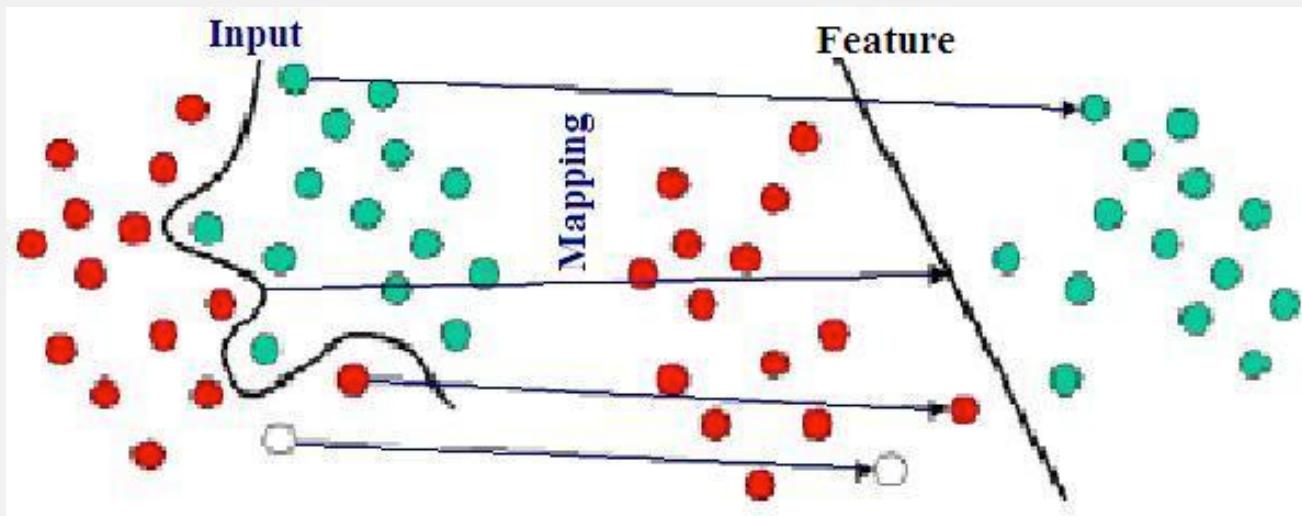
Handling Outliers

- SVM finds a perfect boundary (sometimes **over fitting**).
- A *soft margin* parameter can allow a small number of points on the wrong side of the boundary, diminishing training accuracy.
- **Tradeoff:** Training accuracy vs. predictive power.



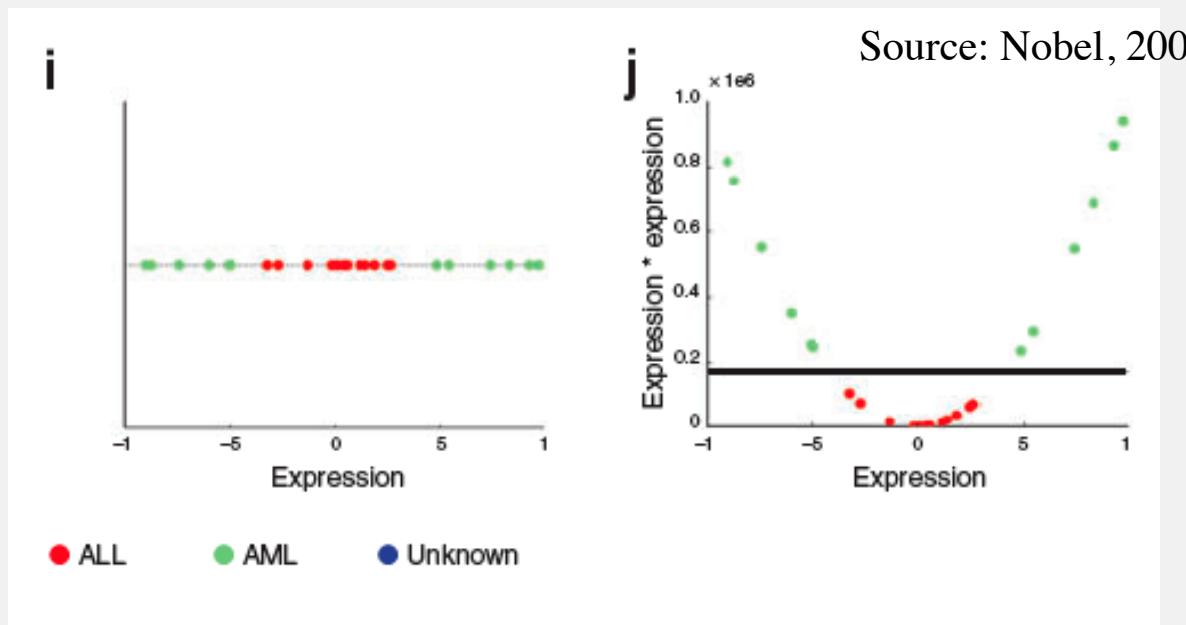
Nonlinear Classification

- Nonseparable data: A SVM will map the data into a higher dimensional space where it is separable by a hyperplane.
- The *kernel function*: For any consistently labeled data set, there exists a kernel function that maps the data to a linearly separable set.



Kernel Function Example

- In figure *i* the data are not separable in a 1-dimensional space, so we map them into a 2-dimensional space where they are separable.
- Kernel Function, $K(x_i) \rightarrow (x_i, 10^5 \cdot x_i^2)$



SVM Math

Maximum Margin Hyperplane

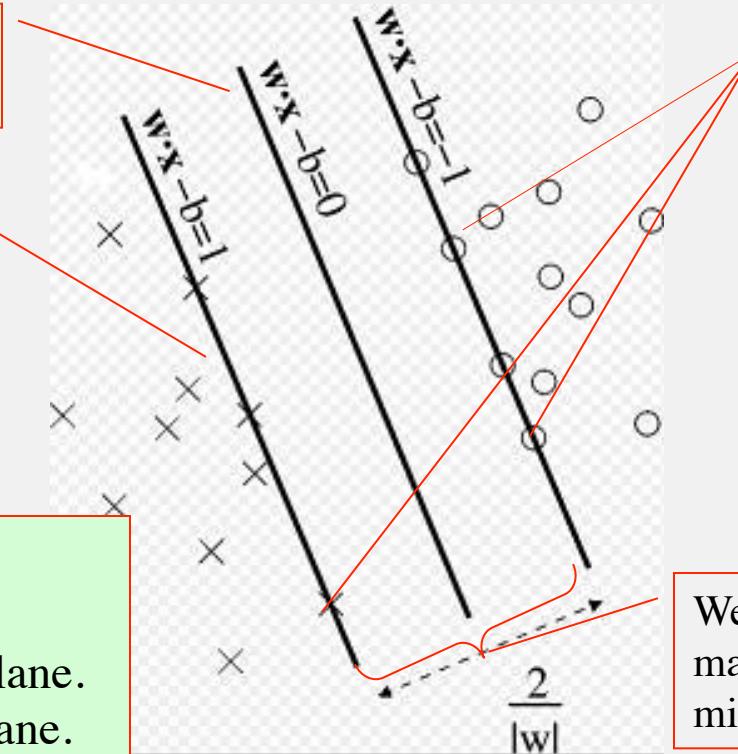
Boundary plane.

Support vectors are points on the boundary planes.

Notation:

- w is a vector perpendicular to the plane.
- x is a point on the plane.
- b is the offset (from the origin) parameter

We **maximize** this margin by minimizing $|w|$.



Source: Burges, 1998

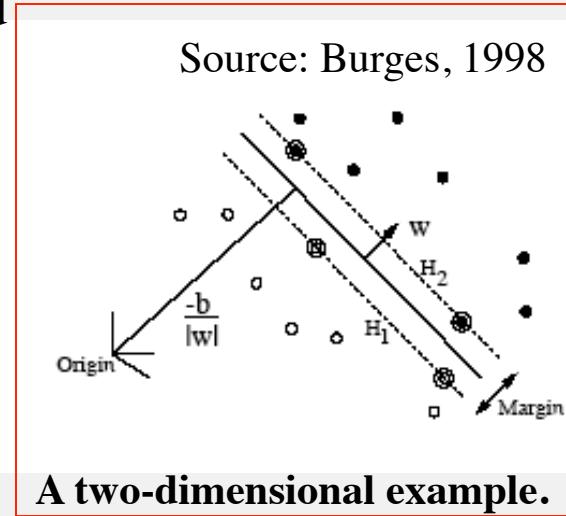
SVM Math (cont)

- Let $S = \{(x_i, y_i)\}, i=1, \dots, p$ be a set of labeled data points where $x_i \in R^d$ is a *feature vector* and $y_i \in \{1, -1\}$ is a *label*.
- We want to exclude points in S from the *margin* between the two boundary hyperplanes, which can be expressed by the following *constraint*:

$$y_i(\mathbf{w} \cdot \mathbf{x}_i - b) \geq 1, \quad 1 \leq i \leq p.$$

- To maximize the distance $2/\|\mathbf{w}\|$ between the two boundary planes, we minimize $\|\mathbf{w}\|$, the vector perpendicular to the hyperplane.
- A *Lagrangian* formulation allows us to represent the training data simply as the *dot product* between vectors and allows us to simplify the constraint. Given α_i as the Langrange multiplier for each constraint (each point), we maximize:

$$L = \sum_i \alpha_i - 1/2 \sum_{i,j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$$



SVM Math Summary

- To summarize:
 - For the separable linear case, training amounts to maximizing L with respect to α_i . The *support vectors*--i.e. those points on the boundary planes for which $\alpha_i > 0$ -- are the only points that play a role in training.
 - This maximization problem is solved by *quadratic programming*, a form of mathematical optimization.
 - For the *non-separable case* the above algorithm would fail to find a hyperplane, but solutions are available by:
 - Introducing *slack variables* to allow certain points to violate the constraint.
 - Introducing *kernel functions*, $K(\mathbf{x}_i \cdot \mathbf{x}_j)$ which map the dot product into a higher-dimensional space.
 - Example kernels: *linear*, *polynomial*, *radial basis function*, and others.

LIBSVM Example

- Software Tool: LIBSVM
- Data: Astroparticle experiment with 4 features, 3089 training cases and 4000 labeled test cases.
- Command-line experiments:

```
$ svmscale train.data > train.scaled
$ svmscale test.data > test.scaled
$ svmtrain train.scaled > train.model
    Output: Optimisation finished, #iter = 496
$ svm predict test.scaled train.model test.results
    Output: Accuracy = 95.6% (3824/4000) (classification)
```
- Repeat with different parameters, kernels.

Analyzing Baseball Data

- Problem: Predict winner/loser of division or league.
- Major league baseball statistics, 1920-2000.
- Vectors: 30 Features, including (most important)

G (games)	W (wins)	L (losses)
PCT (winning)	<u>GB (games behind)</u>	R (runs)
OR (opponent runs)	AB (at bats)	H (hits)
2B (doubles)	3B (triples)	HR (home runs)
BB (walks)	SO (strike outs)	AVG (batting)
OBP (on base pct)	SLG (slugging pct)	SB (steals)
ERA (earn run avg)	CG (complete games)	SHO (shutouts)
SV (saves)	IP (innings)	

Baseball Results

(All numbers are % of predictive accuracy)

Model	Training CV Data	Test Data	Test 50/50	Random Data	Random 50/50	All Zeroes	All Ones
Random Control	85.3	86.7	50	86.7	50	100	0
Trivial Control 1 GB Only	99.8	99.8	100	77.2	48.3	86.8	13.2
Trivial Control 2 PCT Only	99.3	99.3	97.7	85.3	50	84.6	15.4
Trivial Control 3 All features	98.6	98.8	96.5	74.1	49.8	85.0	15.0
Test Model 1 All Minus GB & PCT	91.2	92.4	72.2	79.6	48.0	89.5	10.5
Test Model 2 AVG+OBP +SLG+ERA+SV	89.5	90.4	63.0	76.9	49.7	87.2	12.8
Test Model 3 All Minus GB	92	89.4	69.4	77.5	49.8	91.0	9.0
Test Model 4 R & OR Only	90	89.4	75.9	79.9	47.6	92.6	7.4

Software Tools

- Many open source SVM packages.
 - [LIBSVM](#) (C. J. Lin, National Taiwan University)
 - [SVM-light](#) (Thorsten Joachims, Cornell)
 - [SVM-struct](#) (Thorsten Joachims, Cornell)
 - [mySVM](#) (Stefan Ruping, Dortmund U)
- Proprietary Systems
 - [Matlab](#) Machine Learning Toolbox

References

- Our WIKI (<http://www.cs.trincoll.edu/bioinfo>)
- C. J. C. Burges. A tutorial on support vector machines for pattern recognition. *Data Mining and Knowledge Discovery* 2, 121-167, 1998.
- T. S. Furey *et al.* Support vector machine classification and validation of cancer tissue samples using microarray expression data. *Bioinformatics* 16(10), 2000.
- T. R. Golub, *et al.* Molecular classification of cancer: Class discovery and class prediction by gene expression. *Science* 286, 531, 1999.
- I. Guyun, *et al.* Gene selection for cancer classification using support vector machines. *Machine Learning* 46, 389-422, 2002.
- W. S. Noble. What is a support vector machine. *Nature Biotechnology* 24(12), Dec. 2006.