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Abstract- Multiple sequence alignment can be used as a
tool for the identification of common structure in an
ordered string of nucleotides (in DNA or RNA) or amino
acids (in proteins). Current multiple sequence alignment
algorithms work well for sequences with high similarity
but do not scale well when either the length or number of
the sequences is large or if the similarity is low. The focus
of this paper is to develop an evolutionary programming
(EP) algorithm for multiple sequence alignment. An EP
method with representation specific variation operators
is proposed and tested on several data sets. Comparisons
to other algorithms suggests that this algorithm is well-
suited to the multiple sequence alignment problem.

1. Introduction

Alignment of nucleotide or protein sequences is a funda-
mental process in molecular biology. Sequences that show a
high degree of similarity across different taxa are thought to
have similar structure and function. These types of
sequences are important in deciphering the evolutionary his-
tory or phylogenetic relations among organisms (Sankoff et
al., 1987). Sequence comparison can also be used to obtain
information on secondary and tertiary structure (Hori and
Osawa, 1979; Wong et al., 1976), and for estimating the evo-
lutionary distance between the genomes of two organisms
(Rempe, 1987).

The alignment of a pair of molecular sequences is a diffi-
cult problem in light of the fact that any two sequences in an
ensemble may not be identical due to substitution, insertion
or deletion of elements in either one or both of the two
sequences at any position. These mutational processes are
the root of change at the molecular level. One of the goals of
any alignment procedure is to extract information from a col-
lection of sequences despite their sometimes extensive evo-
lutionary divergence.

Pairwise alignment attempts to compute the similarity
between two sequences by minimizing the number of primi-
tive mutational steps required to match the first to the sec-
ond. Needleman and Wunsch (1970) were the first to solve
the problem of maximum pairwise similarity alignment for
two sequences. Rewards were given for similarities or iden-
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tities in the two sequences and penalties were given for dele-
tions (referred to as gaps) or mismatches. Dynamic
programming (Sankoff, 1972; Waterman et al., 1976) has
been accepted as an effective tool for the optimal alignment
of two sequences. Waterman et al. (1976) generalized the
method of Needleman and Wunsch (1970) to satisfy all the
metric conditions (Sellers, 1974). His method was also capa-
ble of working with deletions and insertions of any length.
Gotoh (1982) reduced the complexity of the method pre-
sented in Waterman et al. (1976) from O(mlzmz) to O(mymy)
where m; and m, were the lengths of the first and second
sequences. Myers and Miller (1988) demonstrated that
Gotoh’s method could be implemented in O(m;) space.
However, the complexity still remains O(mm,).

Multiple sequence alignment refers to the search for max-
imal similarity in three or more sequences (Chan et al,
1992). Direct extensions of pairwise alignment algorithms to
the alignment of » sequences of length m have been offered.
These method typically have O(m™) complexity (Chan et al.,
1992) making them unsuitable when either the length or the
number of sequences is large. Many approaches attempt to
circumvent this increased computational complexity. Clust-
alW (Higgins and Sharp, 1988) uses the fast/approximate
method of Wilbur and Lipman (1983) and the result of each
comparison is a similarity score for a pair of sequences. The
similarity scores are used to construct a dendrogram using
the UPGMA cluster analysis method of Sneath and Sokal
(1973). ClustalW is the most commonly used multiple
sequence alignment tool available. In general, most algo-
rithms require at least n—1 pairwise alignment processes
when aligning » sequences (Zhang and Wong, 1997) and the
majority use heuristics to arrive at high scoring non-optimal
alignments that satisfy a number of constraints.

Godzik and Skolnick (1994) applied Monte Carlo meth-
ods to the multiple alignment of protein structures and
sequences. Kim et al. (1994) proposed simulated annealing
as the basis for an efficient multiple sequence alignment
algorithm. Both of these approaches can accept arbitrary
scoring functions including non-local ones. For small num-
bers of sequences with high similarity, these algorithms are
slower than dynamic programming. However, as the number
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of sequences increases, their efficiency increases to a rate
comparable or better than dynamic programming in generat-
ing near-optimal solutions.

Methods of evolutionary computation have been offered
for the multiple sequence alignment problem (Notredame et
al. 1996; Notredame et al. 1997; Zhang and Wong 1997;
Anabarasu et al. 1998; Gonzalez et al. 1998; Notredame et
al. 1998). In this paper, an evolutionary programming
(Fogel, 1995) algorithm is proposed for multiple sequence
alignment. This algorithm has been tested on several DNA
sequence sets. Preliminary results suggest that this algorithm
is viable and the quality of solutions is comparable to that
obtained with ClustalW.

2. Method

For simplicity the description of the method will be lim-
ited to DNA sequences composed from the DNA nucleotide
alphabet {A,T,C,G}). The same method can be directly
extended for the alignment of RNA and protein sequences.
Consider n DNA sequences of lengths /y, I, ..., [, to be
aligned. These n sequences were generally of different
lengths. Any candidate alignment of these n sequences was
represented as a matrix with the following properties:

1. The matrix had »n rows, with the i/ th row representing
the 7 th sequence.

All entries in the matrix consisted of elements from the
set {A,T,C,G,-}, where A, T, C, and G represented the
four DNA nucleotides, namely, adenine, thiamine,
cytosine, and guanine. The symbol “-” infers a gap in
the alignment such that there has been an insertion or
deletion at that position in the sequence relative to the
other sequences in the set. The non-gap entries in the
i th row consisted of the symbols from the i th sequence
taken in order.

The maximum number of columns was limited to
w = [121,,. ], where L, = max{l}, b, ..., [,}and [x]
represents the smallest integer greater than or equal to x.
The choice of 1.2 as a scaling factor allowed the align-
ment to be 20 percent longer than the longest sequence
in the set. This choice was based on the observation that
solutions to common alignment problems rarely con-
tained more than 20 percent gaps.

Thus, the search space for alignments consisted of all possi-
ble matrices representing possible alignments and satisfying
the above three conditions.

2.

These alignments represented as matrices were optimized
using evolutionary programming. A population of candidate
alignments was maintained. A suite of variation operators
was used to produce variation among existing alignments.
Selection was used to determine which solutions were to sur-
vive to the next generation and which solutions were to be
culled from the population. One application of variation and
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selection constituted a single generation. This process of
variation and selection was iterated until a prespecified ter-
mination criterion was satisfied. The process is detailed
below.

2.1 Initialization

Two methods of initialization were used based on the
length and expected inter-sequence similarity of the
sequences in the alignment. A population of p initial parent
alignment matrices was produced by randomly initializing
their constituent rows. In each alignment, the i th row con-
tained the i th sequence of length /;. In the first method, the
positions of these symbols in the row was chosen as follows:
A random permutation of the numbers 1, 2, ..., w (represent-
ing column positions in the row) was produced. The first /;
entries in this permutation were chosen to be the positions
for the symbols. The positions in the row represented by the
remaining entries were filled with gaps. This process gener-
ated a uniform sampling from all possible alignments in the
search space. The second method was based on precomput-
ing all pairwise alignments for the sequences to be aligned.
For each parent to be initialized, a random permutation of
the n sequences was generatedl. Pairwise global alignments
of all adjacent sequences in the permutation were computed
using the O(n) space, O(mn) complexity algorithm described
in Myers and Miller (1988). These pairwise alignments were
merged in a sequential manner starting with the first
sequence in the permutation and ending with the last
sequence. Two examples illustrating the initialization meth-
ods are shown in Figure 1. Associated with each alignment,
A;, were two self-adaptive parameters, o;, and ;. o; repre-
sented the mean number of sequences to be selected for shuf-
fle mutation and m; represented the mean number of times
each selected sequence was to be mutated. 6; was initialized
to [0.2n7] and n; was initialized to [0.2w7]. The generation
number, g, was set to 1.

2.2 Variation

The p parents were copied into p offspring, with each
parent generating a single offspring. Each of these offspring
was probabilistically varied using one of five possible varia-
tion operators, namely, RandomShuffle, LocalShuffleOne,
GrowMatchedCol, RecombineMatchedCol, LocallyAlign-
Block. The corresponding probabilities of selecting each
operator were 0.4, 0.3, 0.1, 0.1, and 0.1, respectively. While,
the RandomShuffle operator was used for exploration, the
LocalShuffleOne, GrowMatchedCol, LocallyAlignBlock, and
RecombineMatchedCol operators were purely exploitative

1. Note that given n sequences, there are n! number of pos-
sible permutations, each of which gives rise to a valid align-
ment that can be generated through the second method.



ID Sequence L  Permutation(1->10) Posi
S1 ATCAA (5) 352691748 35
S2 TAATCAA (7) 96 7148532 9 6
S3 ATCA (4) 6251483709 6 2
S4 TAATCAT (7) 7 4 9135862 7 4
S5 ATGATT (6) 568431972 56
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Figure 1(a). Example illustrating the random initialization procedure. S1 through S5 are five sequences of lengths (L) five, seven,
four, seven, and six nucleotides, respectively. Initial alignment of these sequences was determined using w = ceil(1.2*7) =9.

Permutation of the five sequences:

13254

Pairwise alignments of adjacent sequences in permutation:

S1 ATCAA S3 --ATCA- S2 TAATCAA- S5 --ATGATT

S3 ATCA- S2 TAATCRA S5 --ATGATT S4 TAATCAT-
Merging

Start Add S2 Add S5 Final Alignment (Add S4)

S1 ATCAA S1 --ATCAA S1 --ATCAA- S1 ~-ATCAA-

S3 ATCA- S3 -~ATCA- 83 -~ATCA-- 83 --ATCA--

S2 TAATCAA S2 TAATCAA- S2 TAATCAA-

S5 --ATGATT S5 ~-ATGATT

S4 TAATCAT-

Figure 1(b). Example illustrating the pairwise global align based initialization method. S! through S5 are five sequences of
lengths five, seven, four, seven, and six nucleotides, respectively. For the simple example above the optimal multiple sequence
alignment is directly obtained on initialization. However, with increasing number and length of sequences the initial alignment is

not optimal but possesses high fitness.

(i.e., they guaranteed an offspring that was as good as or bet-
ter than the parent).

The RandomShuffle operator picked p sequences at ran-
dom from the alignment, 4;, for variation (see Figure 2). p
was produced by sampling a Poisson random variable with
mean o;. If p exceeded # or fell below one, it was reset to the
limit that it violated. The selection of sequences was biased
by the following scaling factor:

1, 21

w=3+3(=1) O
where, r; is the rank of the i th sequence in terms of its simi-
larity to the consensus of the alignment. The consensus
sequence was determined based on the number of occur-
rences of each nucleotide, A, T, C, and G in each of the col-
umns of the alignment (standard IUPAC redundant
nucleotide letter codes).

Each of the p selected sequences was varied as follows:

1. The number of symbols to be shuffled, ¢, was obtained
by sampling a Poisson random variable with mean n;. If
g exceeded w or fell below one, it was reset to the limit
that it violated.

2. g symbols were randomly shuffled with gaps. Randomly
shuffling a symbol comprised selecting a gap at random,
extracting the gap from the sequence, and inserting the
gap to the left or right of the symbol. If the selected gap
was to the right of the symbol, then it was inserted to the
left the symbol and vice versa. The selection of symbols
and gaps was biased by the scaling factors vg and vy,
respectively, defined by

447

M, -1
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Vg = 1 —Vy 3

where

B, = min(N,~ M, 3) @
a; = 1-0.25(1+8)) Q)
v = 1-q {6)
N; = number of symbols in the j th column O]
M; = number of matches in the j th column 8)

Lognormal self-adaptation was used to update o; and n;
parameters of the offspring before p and ¢ were sampled for
variation. Mathematically,

R0, 1

q; = qﬁup(—%:ﬁi— (9)
R0, 1

nj = ner(L5 (10)

where R; represents a Gaussian random variable with zero
mean and unit variance that is resampled for every o’ and
n;.

The LocalShuffleOne operator selected one of the
sequences at random and scanned through it to find all sym-
bols that had one or more gaps adjacent to them (see Figure
2). One of these symbols was selected with uniform proba-
bility. Notice that the selected symbol can be shifted to the
left or right (or both) due to the presence of adjacent gaps.
The selected symbol was shifted to each of its neighboring
gaps and the fitness of the alignment was recomputed. The



Description

The second and fifth sequences have been randomly shuffled. The symbol (gap) at
the beginning (ending) of the fifth (second) sequence were selected at random (in a
biased manner) from the available symbols (gaps) in the selected sequence. The
subsequence indicated in bold has been modified due to the shuffling of the selected
symbol and gap.

The third sequence was selected for variation uniformly at random from the five
sequences. The fourth symbol (A) was selected at random. The symbol A can be
shifted to three possible neighboring positions in columns seven, eight, and nine
respectively. Of these three, shifting to the eight column was chosen as it resulted in
the highest increase in fitness.

In the parent, the sixth column is fully matched with A’s. The GrowMatchedCol
operator selects one such matched column and tries to generate matched columns
adjacent to it. For the sixth column, there are two possible fully matched adjacent
columns that can be generated, one consisting of all C’s to its left and the other con-
sisting of all T’s to its right. The column of T’s to the right is randomly selected
(with equal probability) for generation.

Operator Parent (s) Offspring
123456789 123456789
-AT-CA--A -AT-CA--A
T--AATCAA T-AATCA-A
RandomShuffle AT——CAoew ATe—CAmmm
T-AAT-CAT T-AAT-CAT
A-TGAT-T- A--TGATT-
123456789 123456789
~AT-CA-AA -AT-CA-AA
T--AATCAA T--AATCAA
LocalShuffleOne AT CAm e AT——Coone
T-AAT-CAT T-AAT-CAT
A-TGAT-T- A-TGAT-T-
123456789 123456789
-AT-CA-TC ~AT-CAT-C
TA-C-ATAA TA-C-ATAA
GrowMatchedCol AT——CA-—T AT CAT-—
T-C--A-~T T-C--AT--
A-TC-A-T- A-TC-AT--
Parentl
123456789
[ESQENEN Py
-ATCA--AT Offspring
T--AATCAA 123456789012
--—-ATCA- R et B
T-AAA-C-T -ATCA--AT---
, A-TGAT-T- T--AA---TCAA
Recombine- A
MatchedCol ~-~~A---TCA-
Parent2 T-AAA-C-T---
1234567890 A-TGA---T-T-
- [ .
-ATCAAT-—-
T--A-ATCAA
————— ATCA-
T~AAACT~-~~
A-TG-AT-T-

Column five in the first parent consists of all A’s and is fully matched. Similarly,
column seven is fully matched in the second parent. Recombine MatchedCol tries to
generate an offspring that contains both the matched columns. In the offspring, the
arrangement of the symbols in each sequence is the same as that of the first parent
up to the T’s in the matched column of the second parent. The arrangement of the
sequences after the matched T’s in the offspring is the same as that in the second
parent. Extra gaps are inserted in a copy of the first parent to line up the T’s as they
appear in the second parent. In the general case, when a number of possible col-
umns can be recombined, one is selected with uniform probability for generation in
the offspring. Matched up columns in the second parent that require breaking up
one or more matched columns in the first parent are discarded.

Figure 2. Examples illustrating the first four variation operators, RandomShuffle, LocalShuffleOne, GrowMatchedCol, and RecombineMatchedCol. S1

through S5 are five sequences of lengths five, seven, four, seven, and six nucleotides, respectively.

position of the symbol that gave the highest fitness became
the destination for the symbol. If none of the neighboring
gap positions generated a better fitness, then the sequence
was left unchanged.

The GrowMatchedCol operator selected a fully matched
column in the alignment (with no gaps) with no more than
one adjacent matched column and attempted to add to the
ma‘ched column by generating, if possible, another matched
column next to it (see Figure 2).

The variation of an alignment using RecombineMatched-
Col comprised the following steps:

1. Select a mate at random with uniform probability from
the population.

2. Identify all matched columns in the current alignment
and the random mate.

3. Determine all matched columns in the mate that are not
present in the current alignment and can be added to it
without disrupting any existing matched columns. One
of these matched columns in the mate was regenerated
in the current alignment by lining up the corresponding
symbols in the current alignment in one column.

‘The RecombineMatchedCol operator (see Figure 2) was fail-
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safe in that the number of matched columns was guaranteed
not to decrease. However, the process of lining up the sym-
bols to generate a new matched column could result in a
reduction in the overall fitness of the alignment.

The LocallyAlignBlock operator was used to speed up the
evolution of sub-alignments between fully matched col-
umns. It identified all sub-alignments that were located
between matched columns and locally aligned one of these
sub-alignments selected at random. The local alignment pro-



cedure was a modified version of the alignment construction
algorithm presented in Zhang and Wong (1997):

1. Extract the sub-alignment and replace it with gaps. This
extracted and filled in region of the alignment was
referred to as the gap sub-alignment. Let the width of

the gap sub-alignment be w,.

2. Convert the extracted sub-alignment into a set of subse-
quences by removing all gaps.

3. Find the longest subsequence, say row i, and insert it
into the alignment (without any gaps).

4. Forj=1through nandj #i,

a. Place the jth subsequence at the beginning of the
Jj th row of the gap sub-alignment. Let the length of
the subsequence be s.
b. fork=sdownto 1,
Move the k th symbol in the subsequence in the
free space (to its right) of the gap sub-alignment,
to the position that maximizes fitness.
endfor
endfor
Notice that the above algorithm will always generate the
same arrangement of the sub-alignment. Further, the opti-
mized sub-alignment is not guaranteed to be global as it
depends on the order in which the subsequences are placed
and optimized in the gap sub-alignment (step 4). Further, if a
sub-alignment that was previously optimized using Locally-
AlignBlock was selected, then a second application of the
operator would not generate any variation. In view of this, a
randomized version was used that picked the j values in step
4 in a randomly permuted order.

2.3 Fitness Evaluation

Before computing the alignment fitness, all columns that
consisted of only gaps were deleted. The fitness of the result-
ing cleaned up alignment was computed using

Fitness = SymbolScore — GapScore (12)
where SymbolScore was the overall score for the number of
matched symbols over all columns and the GapScore was
the overall score for the number of gaps over all columns.
The SymbolScore and GapScore values were computed
using

M;
SymbolScore = ZMJ(I + 71) (13)
J
n—N;
GapScore = Z(n-/vj)(l +— f) (14)
J

The number of matches in each of the columns was linearly
scaled (such that any column that was fully matched up was
doubled) and the aggregate sum of all such scaled number of
matches over all columns became the SymbolScore. Simi-
larly, the GapScore was computed based on linearly scaled
number of gaps over all columns. Fitness was to be maxi-
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mized, i.e., alignments with a higher fitness were considered
to be better.

2.4 Selection and Termination

Tournament selection as is typically implemented in evo-
lutionary programming (Fogel, 1995) was chosen to deter-
mine which individuals in the current population were to
become parents for the next generation. Each member of the
population was compared with 10 opponents that were ran-
domly selected (with replacement) from the population. For
each comparison in which the fitness of the member was
equal to or higher than that of the opponent, the member
received a win. The u members with the highest number of
wins were selected to be the parent alignments for the next
generation. The generation number, g, was incremented by
one.

The process of variation, fitness evaluation, and selection
was repeated until one of three termination criteria were sat-
isfied:

1. The number of generations exceeded g,,,, = 200.

2. The best fitness did not improve over 100 generations.

3. The number of gaps in the best alignment fell below
0.2%.

3. Results

Several multiple sequence alignment experiments with
varying number and lengths of sequences were conducted to
test the proposed evolutionary programming method. In the
interests of space, results regarding only four data sets are
briefly presented here?. These data sets differed with respect
to their length, number, or similarity.

Data set 1 was composed of 10 sequences from Zhang
and Wong (1997). These 10 sequences were very similar and
had been directly compared by Zhang and Wong to Clust-
alW in a previous analysis (Zhang and Wong, 1997). The
average length of data set 1 was 212 nucleotides. Data set 2
was composed of 8 sequences of 16S rRNA (acquired from
GenBank). These sequences were equally similar to the 10
sequences in data set 1, however the average length was sig-
nificantly larger at 457 nucleotides. Data set 3 was com-
posed of the 5' portion of the histone H3-II gene from 21
species of Tetrahymena, a freshwater ciliate (Brunk and
Sadler, 1990). These sequences were of nearly the same
length as those in data set 1, possessed a high similarity, but
had twice the number of sequences relative to data set 1.
Data set 4 contained 21 sequences from a 200 nucleotide
intergenic region between histone genes H3-II and H4-II in
Tetrahymena. This region was previously characterized as

2. The full set of results are available at
http://vision.ucsd.edu/~kchellap/


http://vision.ucsd.edu/-kchellapl

having a much lower similarity in comparison to the
sequences in data set 3 (Brunk and Sadler, 1990). Data set 4
therefore has the lowest similarity, with the same number of
sequences as in data set 3, but with sequence lengths that
were approximately three times longer.

Table 1 summarizes the results obtained using the pro-
posed EP algorithm for sequence alignment. On the first data
set, S1, the EP approach discovered the same solution as that
found by Zhang and Wong (1997) and ClustalW. The num-
ber of matched columns was 198 (Zhang and Wong (1997)
incorrectly stated that ClustalW’s solution had only 197 fully
matched columns). The first data set demonstrates that this
technique is equally robust as ClustalW and the method pre-
sented by Zhang and Wong (1997). Unfortunately, further
comparisons with the method of Zhang and Wong (1997)
were not possible due to the non-availability of the remain-
ing data sets reported in their paper. Therefore, we were
forced to make direct comparisons only to ClustalW.

Data set 2 contained 8 sequences of 16S rRNA from a
variety of bacteria. These sequences were roughly twice the
mean length of the sequences in data set 1 and contained
roughly the same number of sequences. In both cases, the
best alignment (449 matched columns) was discovered by
both the EP algorithm and ClustalW. Data set 3 contained
sequences from the histone H3-1I gene from 21 species of
Tetrahymena. These sequences were roughly half the length
of data set 1. Again, the best alignment (109 matched col-
umns) was discovered by both algorithms.

As a true test of the performance of the EP algorithm rel-
ative to ClustalW, 21 sequences with a mean length of 333.4
nucleotides were used in data set 4. These sequences com-
pose the intergenic region between histone genes H3-II and
H4-II in various species of the ciliated protozoa Tetrahy-
mena. This region has been previously identified as having
less sequence similarity than either the histone H3-II or his-
tone H4-II genes (Brunk and Sadler, 1990; Brunk et al.,
1990). When using both EP and ClustalW, EP was able to
discover a better alignment (102 matched columns relative to
91 matched columns) in only 180 generations. This differ-
ence suggests that alignment algorithms using evolutionary
computation are likely to outperform ClustalW when the
similarity of the sequences is low.

4. Discussion

Three variables are particularly important for any multi-
ple sequence alignment algorithm; the number of sequences,
the average length of the sequences, and the overall similar-
ity of the sequences. Traditional algorithms such as Clust-
alW are known to be very successful when the number or
average length is low and the overall similarity of the
sequences is high. For instance, ClustalW can determine the
optimal alignment for the sequences in data set 1 (10 very
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similar sequences of average length 211 nucleotides) in 27
seconds. However, this same algorithm takes 14 hours and 3
minutes to compute the alignment for 10 less similar
sequences of average length 9000 nucleotides (Zhang and
Wong, 1997). Even after using ClustalW, most biologists
use some degree of post-processing to refine the alignment
into something more “meaningful.” The reason for this lies
in the limitations ClustalW poses on the type of objective
functions that it can optimize. Clearly, an evolutionary
approach that relaxes this limitation and allows for any arbi-
trary user defined fitness function could be used to search the
space of possible sequence alignments in a more efficient
manner.

Notredame et al. (1997) used a genetic algorithm
(RAGA) for aligning related sequences of RNA using infor-
mation regarding their secondary structure. Information
about the secondary structure of one of the two sequences
was used to predict the position of the structural elements in
the second sequence. RAGA was an extension of an earlier
algorithm (SAGA) for multiple sequence alignment using
genetic algorithms (Notredame and Higgins, 1996). The
algorithm for RNA structural alignment was also made par-
allel (PRAGA) (Notredame et al., 1997). Although these
efforts are a powerful step in the right direction, RAGA and
PRAGA make use of structural information to assist in their
alignment. With a very limited number of RNA structures
determined by X-ray crystallography or NMR, structural
information is usually predicted through the use of energy
minimization algorithms. Energy minimization algorithms
have been determined to predict incorrect structures in some
cases (Fields and Gutell, 1996) and therefore, alignment on
the basis of structural details is only as valid as the pre-deter-
mination of the structure using thermodynamics. The
method presented in this paper is useful when structural
information is not available or is not desired.

Zhang and Wong (1997) developed a genetic algorithm
approach to multiple sequence alignment. Scoring of the
alignment was based on the number of fully matched col-
umns. Their method was directly compared with ClustalW.
Their approach focused on the identification of matched col-
umns and mutation between columns that were found by a
pre-alignment tool. The method works well when the opti-
mal alignment that is being searched for contains a large
number of fully matched columns i.e., when there is a high
similarity between the sequences. However, few fully
matched columns will be found in sequences of low similar-
ity, making this algorithm useful only for very similar
sequences. Initialization by pre-alignment for matched col-
umn discovery places the search close to local optima on the
response surface. Evolutionary computation will easily dis-
cover the nearest local optima, but must be able to escape the
local optima in order to discover the global optima. In the
experiments described by Zhang and Wong (1997), the



Table 1: Data sets used for testing the proposed evolutionary programming procedure for multiple sequence
alignment. Information regarding the data sets is provided in the Appendix.

Percentage of Number of
Number Ilj'l ealtlhs.e quenlc N matclt:ed 301— Matched Nl\l;l;z::::f Number of
Data Set of ength In nucle- | umns basee o0 4 ¢ g )umns in . | Genera- |EP Score
S otides the best align- ClustalW Columns in tions
equences (min,max) ment using solution EP solution
ClustalW

1. S1 (Zhang, 1997) 10 211.9 (211, 212) 93.39 198 198 200 4082
2. 16S rRNA 8 457.0 (457, 457) 98.25 449 449 400 7233
3. Histone H3 21 122.0 (122, 122) 89.34 109 109 160 4766
4. Histone H3-H4 21 | 3334 (322, 346) 2741 91 102 180 7033
Intergenic Region

genetic algorithm approach was terminated after 10 genera-
tions of stagnation. It is likely that with decreasing sequence
similarity, 10 generations may not be sufficient to escape
multiple local optima required to discover the global optimal
alignment. A special mutation operator was developed to
make drastic changes to the alignment and force solutions
out of local optima.

Gonzalez et al. (1998) generated a simulation of multiple
protein sequence alignment using genetic algorithms. The
three example data sets used in their analysis contained short
sequences (30 nucleotides or less) and a small number of
sequences (three sequences). The results were subjectively
compared to traditional algorithms, however it is expected
that ClustalW could have been easily used on such a small
data set with equal performance in equal or less time. The
true benefits of any evolutionary computation approach to
the multiple sequence alignment problem will be to succeed
where other algorithms fail, rather than to equal the perfor-
mance in areas where traditional algorithms are known to
succeed. For short sequences that are few in number, Clust-
alW already presents a method that is widely appreciated for
solving the problem in a rapid fashion.

Anabarasu et al. (1998) generated a multiple sequence
alignment algorithm using a parallel genetic algorithm. This
algorithm was tested on 4 protein sequence data sets of
lengths between length 48 and 292 nucleotides. The number
of sequences ranged from 4 to 15. Although able to generate
roughly similar or even lower scores than ClustalW, the
operational time of their approach was longer than ClustalW
by two orders of magnitude. The similarity of the sequences
in the data sets was not reported and could not be determined
from the data provided in the paper.

All previous attempts at multiple sequence alignment
using evolutionary computation have focused on two central
themes; a genetic algorithm approach with emphasis on
crossover including, to a lesser degree, special mutation
operators, and comparison of this approach to ClustalW on
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small sequence sets with high similarity. However, any
sequence alignment algorithm must trade off computation
speed for alignment accuracy, especially when there is a low
similarity between the sequences that are to be aligned. A
poor alignment that is generated in a rapid fashion is still a
poor alignment. If there is any part of the multiple sequence
alignment problem where evolutionary computation can be
useful, it is not in the alignment of small sets of very similar
sequences but in large sets of sequences with low similarity.
It is these types of alignments that have been missing from
the literature to date. Generally, it is also difficult to directly
compare the outputs of ClustalW and the various EC
approaches because of their different scoring schemes. One
comparative measure of success that can be used is the num-
ber of matches and the number of fully matched columns
(i.e., columns with only A or T or G or C) in the alignment,
as has been used in this study.

Future experiments will use additional data sets (Briffeuil
et al.,, 1998) to compare the power and confidence against
multiple sequence alignment servers on the internet. A
revised nucleotide scoring matrix (or PAM matrix in the case
of protein sequences) will be incorporated to make the align-
ment score more realistic rather than rely solely on the num-
ber of matches. At present, the EP approach treats all
mismatches with equal penalty. However, the frequency of
transitions or transversions may not be equal in the
sequences that are being compared. It is hopeful that this
altered scoring scheme will allow even better alignments to
be discovered.
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Appendix

Data Set 1: DNA, S1 (Zhang and Wong, 1997)
HCV211A10 HCV2L3A5 HCV2L3A7
HCV2L3A9 HCV2L3B1 HCV2L3B2
HCV2L3Cl HCV2L3C8 HCV2L3D4
HCV2L3E6

Data Set 2: RNA, 16S rRNA (GenBank)
AF095268 AF095267 AF095266
AB023287 AB023286 AB023285
AB023284 AB023283 AB023279
AB023278 AB023276

Data Set 3: DNA, Histone H3 (Brunk et al., 1990)
TPAHISIN TNIHISIN TNHISIN
TMIHISIN TMHISIN TLHISIN
THHISIN TFHISIN TEHISIN
TCUHISIN TCHISIN TCAHISIN
TBHISIN TAUHISIN TAHISIN
TTHISIN TSHISIN TRHISIN
TPYHISIN TPIHISIN TPHISIN

The first 122 symbols from each of the above sequences
were used for alignment.

Data Set 4: DNA, Histone H3-II, Histone H4-II inter-
genic region (Brunk et al., 1990). The sequences were the
same as those in Data Set 3. The intergenic sequence was
extracted starting at 123rd symbol. The length of the
extracted intergenic sequences were 329, 328, 332, 337, 344,
336, 334, 325, 335, 342, 334, 333, 335, 330, 333, 324, 334,
334, 334, 333, 348, respectively.



