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Abstract- Multiple sequence alignment can be used as a 
tool for the identification of common structure in an 
ordered string of nucleotides (in DNA or RNA) or amino 
acids (in proteins). Current multiple sequence alignment 
algorithms work well for sequences with high similarity 
but do not scale well when either the length or number of 
the sequences is large or if the similarity is low. The focus 
of this paper is to develop an evolutionary programming 
(EP) algorithm for multiple sequence alignment. An EP 
method with representation specific variation operators 
is proposed and tested on several data sets. Comparisons 
to other algorithms suggests that this algorithm is well- 
suited to the multiple sequence alignment problem. 

1. Introduction 
Alignment of nucleotide or protein sequences is a funda- 

mental process in molecular biology. Sequences that show a 
high degree of similarity across different taxa are thought to 
have similar structure and function. These types of 
sequences are important in deciphering the evolutionary his- 
tory or phylogenetic relations among organisms (Sankoff et 
al., 1987). Sequence comparison can also be used to obtain 
information on secondary and tertiary structure (Hori and 
Osawa, 1979; Wong et al., 1976), and for estimating the evo- 
lutionary distance between the genomes of two organisms 
(Rempe, 1987). 

The alignment of a pair of molecular sequences is a diffi- 
cult problem in light of the fact that any two sequences in an 
ensemble may not be identical due to substitution, insertion 
or deletion of elements in either one or both of the two 
sequences at any position. These mutational processes are 
the root of change at the molecular level. One of the goals of 
any alignment procedure is to extract information from a col- 
lection of sequences despite their sometimes extensive evo- 
lutionary divergence. 

Painvise alignment attempts to compute the similarity 
between two sequences by minimizing the number of primi- 
tive mutational steps required to match the first to the sec- 
ond. Needleman and Wunsch (1 970) were the first to solve 
the problem of maximum painvise similarity alignment for 
two sequences. Rewards were given for similarities or iden- 
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tities in the two sequences and penalties were given for dele- 
tions (referred to as gaps) or mismatches. Dynamic 
programming (Sankoff, 1972; Waterman et al., 1976) has 
been accepted as an effective tool for the optimal alignment 
of two sequences. Waterman et al. (1976) generalized the 
method of Needleman and Wunsch (1970) to satisfy all the 
metric conditions (Sellers, 1974). His method was also capa- 
ble of working with deletions and insertions of any length. 
Gotoh (1982) reduced the complexity of the method pre- 
sented in Waterman et al. (1976) from O(mI2m2) to O(mlm2) 
where ml and m2 were the lengths of the first and second 
sequences. Myers and Miller (1988) demonstrated that 
Gotoh's method could be implemented in O ( m l )  space. 
However, the complexity still remains O(ml m2). 

Multiple sequence alignment refers to the search for max- 
imal similarity in three or more sequences (Chan et al., 
1992). Direct extensions of painvise alignment algorithms to 
the alignment of n sequences of length m have been offered. 
These method typically have O(m") complexity (Chan et al., 
1992) making them unsuitable when either the length or the 
number of sequences is large. Many approaches attempt to 
circumvent this increased computational complexity. Clust- 
alW (Higgins and Sharp, 1988) uses the fast/approximate 
method of Wilbur and Lipman (1983) and the result of each 
comparison is a similarity score for a pair of sequences. The 
similarity scores are used to construct a dendrogram using 
the UPGMA cluster analysis method of Sneath and Sokal 
(1973). ClustalW is the most commonly used multiple 
sequence alignment tool available. In general, most algo- 
rithms require at least n-1 painvise alignment processes 
when aligning n sequences (Zhang and Wong, 1997) and the 
majority use heuristics to arrive at high scoring non-optimal 
alignments that satisfy a number of constraints. 

Godzik and Skolnick (1994) applied Monte Carlo meth- 
ods to the multiple alignment of protein structures and 
sequences. Kim et al. (1994) proposed simulated annealing 
as the basis for an efficient multiple sequence alignment 
algorithm. Both of these approaches can accept arbitrary 
scoring functions including non-local ones. For small num- 
bers of sequences with high similarity, these algorithms are 
slower than dynamic programming. However, as the number 
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of sequences increases, their efficiency increases to a rate 
comparable or better than dynamic programming in generat- 
ing near-optimal solutions. 

Methods of evolutionary computation have been offered 
for the multiple sequence alignment problem (Notredame et 
al. 1996; Notredame et al. 1997; Zhang and Wong 1997; 
Anabarasu et al. 1998; Gonzalez et al. 1998; Notredame et 
al. 1998). In this paper, an evolutionary programming 
(Fogel, 1995) algorithm is proposed for multiple sequence 
alignment. This algorithm has been tested on several DNA 
sequence sets. Preliminary results suggest that this algorithm 
is viable and the quality of solutions is comparable to that 
obtained with ClustalW. 

2. Method 
For simplicity the description of the method will be lim- 

ited to DNA sequences composed from the DNA nucleotide 
alphabet { A,T,C,G). The same method can be directly 
extended for the alignment of RNA and protein sequences. 
Consider n DNA sequences of lengths 11, 12, ..., 1, to be 
aligned. These n sequences were generally of different 
lengths. Any candidate alignment of these n sequences was 
represented as a matrix with the following properties: 

1. The matrix had n rows, with the i th row representing 
the i th sequence. 

2. All entries in the matrix consisted of elements from the 
set {A,T,C,G,-}, where A, T, C, and G represented the 
four DNA nucleotides, namely, adenine, thiamine, 
cytosine, and guanine. The symbol "-" infers a gap in 
the alignment such that there has been an insertion or 
deletion at that position in the sequence relative to the 
other sequences in the set. The non-gap entries in the 
i th row consisted of the symbols from the i th sequence 
taken in order. 

3. The maximum number of columns was limited to 
w = [1.21rr,0x1, where 1- = max{ll, 1% ..., 1,)and rx1  
represents the smallest integer greater than or equal to x. 
The choice of 1.2 as a scaling factor allowed the align- 
ment to be 20 percent longer than the longest sequence 
in the set. This choice was based on the observation that 
solutions to common alignment problems rarely con- 
tained more than 20 percent gaps. 

Thus, the search space for alignments consisted of all possi- 
ble matrices representing possible alignments and satisfying 
the above three conditions. 

These alignments represented as matrices were optimized 
using evolutionary programming. A population of candidate 
alignments was maintained. A suite of variation operators 
was used to produce variation among existing alignments. 
Selection was used to determine which solutions were to sur- 
vive to the next generation and which solutions were to be 
culled from the population. One application of variation and 

selection constituted a single generation. This process of 
variation and selection was iterated until a prespecified ter- 
mination criterion was satisfied. The process is detailed 
below. 

2.1 Initialization 
Two methods of initialization were used based on the 

length and expected inter-sequence similarity of the 
sequences in the alignment. A population of p initial parent 
alignment matrices was produced by randomly initializing 
their constituent rows. In each alignment, the i th row con- 
tained the i th sequence of length li. In the first method, the 
positions of these symbols in the row was chosen as follows: 
A random permutation of the numbers 1 ,2 ,  ..., w (represent- 
ing column positions in the row) was produced. The first 1, 
entries in this permutation were chosen to be the positions 
for the symbols. The positions in the row represented by the 
remaining entries were filled with gaps. This process gener- 
ated a uniform sampling from all possible alignments in the 
search space. The second method was based on precomput- 
ing all pairwise alignments for the sequences to be aligned. 
For each parent to be initialized, a random permutation of 
the n sequences was generated'. Pairwise global alignments 
of all adjacent sequences in the permutation were computed 
using the O(n) space, O(mn) complexity algorithm described 
in Myers and Miller (1988). These pairwise alignments were 
merged in a sequential manner starting with the first 
sequence in the permutation and ending with the last 
sequence. Two examples illustrating the initialization meth- 
ods are shown in Figure 1. Associated with each alignment, 
A ,  were two self-adaptive parameters, oi, and qi. oi repre- 
sented the mean number of sequences to be selected for shuf- 
fle mutation and qi represented the mean number of times 
each selected sequence was to be mutated. oi was initialized 
to ro .2~11  and qi was initialized to r 0 . 2 ~ 1 .  The generation 
number, g, was set to 1. 

2.2 Variation 
The p parents were copied into p offspring, with each 

parent generating a single offspring. Each of these offspring 
was probabilistically varied using one of five possible varia- 
tion operators, namely, RandomShufle, LocalShufleOne, 
GrowMatchedCol, RecombineMatchedCol, LocallyAlign- 
Block. The corresponding probabilities of selecting each 
operator were 0.4,0.3,0.1, 0.1, and 0.1, respectively. While, 
the RandomShufle operator was used for exploration, the 
LocalShuffleOne, GrowMatchedCol, LocallyAlignBlock, and 
RecombineMatchedCol operators were purely exploitative 

1. Note that given n sequences, there are n! number of pos- 
sible permutations, each of which gives rise to a valid align- 
ment that can be generated through the second method. 
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ID Sequence L Permutation(1->lo) Positions Sorted Positions Initial Alignment 
SlATCAA (5) 3 5 2 6 9 1 7 4 8  3 5 2 6 9  2 3 5 6 9  -AT-CA--A 
S2TAATCAA (7) 9 6 7 1 4 8 5 3 2  9 6 7 1 4 8 5  1 4 5 6 7 8 9  T--AATCAA 

AT--CA- -- S3 ATCA (4) 6 2 5 1 4 8 3 7 9  6 2 5 1  
T-AAT-CAT S4TAATCAT (7) 7 4 9 1 3 5 8 6 2  7 4 9 1 3 5 8  1 3 4 5 7 8 9  

S5ATGATT (6) 5 6 8 4 3 1 9 7 2  5 6 8 4 3 1  1 3 4 5 6 8  A-TGAT-T- 

1 2 5 6  

Figure I(a). Example illustrating the random initialization procedure. SI through S5 are five sequences of lengths (L) five, seven, 
four, seven, and six nucleotides, respectively. Initial alignment of these sequences was determined using w = cei1(1.2*7) = 9. 

Permutation of the five sequences: 1 3 2 5 4 
Pairwise alignments of adjacent sequences in permutation: 
S1 ATCAA S3 --ATCA- S2 TAATCAA- S5 --ATGATT 
S3 ATCA- S2 TAATCAA S5 --ATGATT S4 TAATCAT- 
Merging 
Start Add S2 Add S5 Final Alignment (Add 54) 

SI. ATCAA S1 --ATCAA S1 --ATCAA- S1 --ATCAA- 
S3 ATCA- 53 --ATCA- S3 --ATCA-- S3 --ATCA-- 

52 TAATCAA S2 TAATCAA- S2 TAATCAA- 
S5 --ATGATT S5 --ATGATT 

S4 TAATCAT- 

Figure I(b). Example illustrating the pairwise global align based initialization method. SI through S5 are five sequences of 
lengths five, seven, four, seven, and six nucleotides, respectively. For the simple example above the optimal multiple sequence 
alignment is directly obtained on initialization. However, with increasing number and length of sequences the initial alignment is 
not optimal but possesses high fitness. 

(i.e., they guaranteed an offspring that was as good as or bet- 
ter than the parent). 

The RandomShufle operator picked p sequences at ran- 
dom from the alignment, Ai ,  for variation (see Figure 2).  p 
was produced by sampling a Poisson random variable with 
mean oi. I fp  exceeded n or fell below one, it was reset to the 
limit that it violated. The selection of sequences was biased 
by the following scaling factor: 

where, ri is the rank of the i th sequence in terms of its simi- 
larity to the consensus of the alignment. The consensus 
sequence was determined based on the number of occur- 
rences of each nucleotide, A, T, C, and G in each of the col- 
umns of the alignment (standard IUPAC redundant 
nucleotide letter codes). 
Each of the p selected sequences was varied as follows: 
1. The number of symbols to be shuffled, q, was obtained 

by sampling a Poisson random variable with mean qi. If 
q exceeded w or fell below one, it was reset to the limit 
that it violated. 
q symbols were randomly shuffled with gaps. Randomly 
shuffling a symbol comprised selecting a gap at random, 
extracting the gap from the sequence, and inserting the 
gap to the left or right of the symbol. If the selected gap 
was to the right of the symbol, then it was inserted to the 
left the symbol and vice versa. The selection of symbols 
and gaps was biased by the scaling factors vsj and v+ 
respectively, defined by 

2. 

v4 = I - v .  SJ (3 1 

P j  = m i n ( N j - M p 3 )  (4) 
aj = 1 -0.25( 1 + pj )  ( 5 )  

y .  J = I-a.  J ( 6 )  
Nj = number of symbols in the j  th column (7) 
Mj = number of matches in the j  th column (8) 

Lognormal self-adaptation was used to update oj and qj 
parameters of the offspring before p and q were sampled for 
variation. Mathematically, 

where 

(9) 

where Rj represents a Gaussian random variable with zero 
mean and unit variance that is resampled for every oj' and 

The LocalShufleOne operator selected one of the 
sequences at random and scanned through it to find all sym- 
bols that had one or more gaps adjacent to them (see Figure 
2). One of these symbols was selected with uniform proba- 
bility. Notice that the selected symbol can be shifted to the 
left or right (or both) due to the presence of adjacent gaps. 
The selected symbol was shifted to each of its neighboring 
gaps and the fitness of the alignment was recomputed. The 

rlj 
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Operator Parent ( s )  Offspring Description 

123456789 123456789 
-AT-CA--A -AT-CA--A 
T-AATCA-A 

T-AAT-CAT svmbol and eao. 

The second and fifth sequences have been randomly shumed. The symbol (gap) at 
the beginning (ending) of the fifth (second) sequence were selected at random (in a 
biased manner) from the available symbols (gaps) in the selected sequence. The 
subsequence indicated in bold has been modified due to the shuMing of the selected RandomShufle ~ , I ~ ~ ~  AT--CA--- 

T-AAT-CAT - .  
A-TGAT-T- A--TGATT- 

123456789 123456789 
-AT-CA-AA 

T--AATCAA T - -AATCAA 

T-AAT-CAT 

The third sequence was selected for variation uniformly at random from the five 
sequences. The fourth symbol (A) was selected at random. The symbol A can be 
shifted to three possible neighboring positions in columns seven, eight, and nine 
respectively. Of these three, shifting to the eight column was chosen as it resulted in 
the highest increase in fitness. 

LocalShufleOne AT--CA--- AT- -C- -A- 
T - AAT - CAT 
A-TGAT-T- A-TGAT-T- 

123456789 
-AT-CA-TC 

GrowMatchedCol ~~~~~~ 

T-C--A--T 
A-TC-A-T- A-TC-AT-- (with equal probability) for generation. 

123456789 
-AT-CAT-C 
TA-C-ATAA 
AT--CAT-- 
T-c--AT-- 

In the parent, the sixth column is fully matched with A’s. The GrowMufchedCol 
operator selects one such matched column and tries to generate matched columns 
adjacent to it. For the sixth column, there are two possible fully matched adjacent 
columns that can be generated, one consisting of all C’s to its left and the other con- 
sisting of all T’s to its right. The column of T’s to the right is randomly selected 

Parent1 
123456789 
-__- -_-- 
-ATCA--AT 
T--AATCAA 

ATCA- 
T-AAA-C-T 
A-TGAT-T- 

---- 

Recombine- 
MatchedCol Parent2 

12 34 5 67 890 
------*--- 
- ATCAAT- - - 
T - -A-ATCAA 

ATCA- 
T-AAACT--- 
A-TG-AT-T- 

----- 

Offspring 
123456789012 
----*---*--- 
-ATCA--AT--- 
T--AA---TCAA 

A- - -TCA- ---- 
T---C-T--- 
A-TGA---T-T- 

Column five in the first parent consists of all A’s and is fully matched. Similarly, 
column seven is fully matched in the second parent. RecombineMufchedCol tries to 
generate an offspring that contains both the matched columns. In the offspring, the 
arrangement of the symbols in each sequence is the same as that of the first parent 
up to the T’s in the matched column of the second parent. The arrangement of the 
sequences after the matched T’s in the offspring is the same as that in the second 
parent. Extra gaps are inserted in a copy of the first parent to line up the T’s as they 
appear in the second parent. In the general case, when a number of possible col- 
umns can be recombined, one is selected with uniform probability for generation in 
the offspring. Matched up columns in the second parent that require breaking up 
one or more matched columns in the first parent are discarded. 

Figure 2. Examples illustrating the first four variation operators, RundomShufle, LoculShufleOne, GrowMufchedCol, and RecombineMutchedCol. S 1 
through S5 are five sequences of lengths five, seven, four, seven, and six nucleotides, respectively. 

position of the symbol that gave the highest fitness became 
the destination for the symbol. If none of the neighboring 
gap positions generated a better fitness, then the sequence 
was left unchanged. 

The GrowMatchedCol operator selected a fully matched 
cohmn in the alignment (with no gaps) with no more than 
one adjacent matched column and attempted to add to the 
matched column by generating, if possible, another matched 
cohmn next to it (see Figure 2). 

The variation of an alignment using RecombineMatched- 
Col comprised the following steps: 
1. Select a mate at random with uniform probability from 

the population. 
2. Identify all matched columns in the current alignment 

and the random mate. 

3. Determine all matched columns in the mate that are not 
present in the current alignment and can be added to it 
without disrupting any existing matched columns. One 
of these matched columns in the mate was regenerated 
in the current alignment by lining up the corresponding 
symbols in the current alignment in one column. 

The RecombineMatchedCol operator (see Figure 2) was fail- 
safe in that the number of matched columns was guaranteed 
not to decrease. However, the process of lining up the sym- 
bols to generate a new matched column could result in a 
reduction in the overall fitness of the alignment. 

The LocallyAlignBlock operator was used to speed up the 
evolution of sub-alignments between fully matched col- 
umns. It identified all sub-alignments that were located 
between matched columns and locally aligned one of these 
sub-alignments selected at random. The local alignment pro- 
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cedure was a modified version of the alignment construction 
algorithm presented in Zhang and Wong (1 997): 

Extract the sub-alignment and replace it with gaps. This 
extracted and filled in region of the alignment was 
referred to as the gap sub-alignment. Let the width of 
the gap sub-alignment be wg 
Convert the extracted sub-alignment into a set of subse- 
quences by removing all gaps. 
Find the longest subsequence, say row i ,  and insert it 
into the alignment (without any gaps). 
For j  = 1 through n and j # i, 
a. Place the j th subsequence at the beginning of the 

j th row of the gap sub-alignment. Let the length of 
the subsequence be s. 

b. for k = s down to 1, 
Move the k th symbol in the subsequence in the 
free space (to its right) of the gap sub-alignment, 
to the position that maximizes fitness. 

endfor 
endfor 

Notice that the above algorithm will always generate the 
same arrangement of the sub-alignment. Further, the opti- 
mized sub-alignment is not guaranteed to be global as it 
depends on the order in which the subsequences are placed 
and optimized in the gap sub-alignment (step 4). Further, if a 
sub-alignment that was previously optimized using Locally- 
AlignBlock was selected, then a second application of the 
operator would not generate any variation. In view of this, a 
randomized version was used that picked the j  values in step 
4 in a randomly permuted order. 

2.3 Fitness Evaluation 
Before computing the alignment fitness, all columns that 

consisted of only gaps were deleted. The fitness of the result- 
ing cleaned up alignment was computed using 

where SymbolScore was the overall score for the number of 
matched symbols over all columns and the GapScore was 
the overall score for the number of gaps over all columns. 
The SymbolScore and GapScore values were computed 
using 

Fitness = SymbolScore - GapScore (12) 

SymbolScore = cq(I + 3) (13) 
i 

GapScore = c ( n - N j )  (14) 
j 

The number of matches in each of the columns was linearly 
scaled (such that any column that was fully matched up was 
doubled) and the aggregate sum of all such scaled number of 
matches over all columns became the SymbolScore. Simi- 
larly, the GapScore was computed based on linearly scaled 
number of gaps over all columns. Fitness was to be maxi- 

mized, i.e., alignments with a higher fitness were considered 
to be better. 

2.4 Selection and Termination 
Tournament selection as is typically implemented in evo- 

lutionary programming (Fogel, 1995) was chosen to deter- 
mine which individuals in the current population were to 
become parents for the next generation. Each member of the 
population was compared with 10 opponents that were ran- 
domly selected (with replacement) from the population. For 
each comparison in which the fitness of the member was 
equal to or higher than that of the opponent, the member 
received a win. The p members with the highest number of 
wins were selected to be the parent alignments for the next 
generation. The generation number, g, was incremented by 
one. 

The process of variation, fitness evaluation, and selection 
was repeated until one of three termination criteria were sat- 
isfied: 
1. 
2. 
3. 

The number of generations exceeded g,, = 200. 
The best fitness did not improve over 100 generations. 
The number of gaps in the best alignment fell below 
0.2%. 

3. Results 
Several multiple sequence alignment experiments with 

varying number and lengths of sequences were conducted to 
test the proposed evolutionary programming method. In the 
interests of space, results regarding only four data sets are 
briefly presented here2. These data sets differed with respect 
to their length, number, or similarity. 

Data set 1 was composed of 10 sequences from Zhang 
and Wong (1 997). These 10 sequences were very similar and 
had been directly compared by Zhang and Wong to Clust- 
alW in a previous analysis (Zhang and Wong, 1997). The 
average length of data set 1 was 212 nucleotides. Data set 2 
was composed of 8 sequences of 16s rRNA (acquired from 
GenBank). These sequences were equally similar to the 10 
sequences in data set 1, however the average length was sig- 
nificantly larger at 457 nucleotides. Data set 3 was com- 
posed of the 5' portion of the histone H3-I1 gene from 21 
species of Tetrahymena, a freshwater ciliate (Brunk and 
Sadler, 1990). These sequences were of nearly the same 
length as those in data set 1, possessed a high similarity, but 
had twice the number of sequences relative to data set 1. 
Data set 4 contained 21 sequences from a 200 nucleotide 
intergenic region between histone genes H3-I1 and H4-I1 in 
Tetrahymena. This region was previously characterized as 

2. The full set of results are available at 
http://vision.ucsd.edu/-kchellapl 
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having a much lower similarity in comparison to the 
sequences in data set 3 (Brunk and Sadler, 1990). Data set 4 
therefore has the lowest similarity, with the same number of 
sequences as in data set 3, but with sequence lengths that 
were approximately three times longer. 

Table 1 summarizes the results obtained using the pro- 
posed EP algorithm for sequence alignment. On the first data 
set, S 1, the EP approach discovered the same solution as that 
found by Zhang and Wong (1997) and ClustalW. The num- 
ber of matched columns was 198 (Zhang and Wong (1997) 
incorrectly stated that ClustalW’s solution had only 197 fully 
matched columns). The first data set demonstrates that this 
technique is equally robust as ClustalW and the method pre- 
sented by Zhang and Wong (1997). Unfortunately, further 
comparisons with the method of Zhang and Wong (1997) 
were not possible due to the non-availability of the remain- 
ing data sets reported in their paper. Therefore, we were 
forced to make direct comparisons only to ClustalW. 

Data set 2 contained 8 sequences of 16s rRNA from a 
variety of bacteria. These sequences were roughly twice the 
mean length of the sequences in data set 1 and contained 
roughly the same number of sequences. In both cases, the 
best alignment (449 matched columns) was discovered by 
both the EP algorithm and ClustalW. Data set 3 contained 
sequences from the histone H3-I1 gene from 21 species of 
Tetrahymena. These sequences were roughly half the length 
of data set 1. Again, the best alignment (109 matched col- 
umns) was discovered by both algorithms. 

As a true test of the performance of the EP algorithm rel- 
ative to ClustalW, 21 sequences with a mean length of 333.4 
nucleotides were used in data set 4. These sequences com- 
pose the intergenic region between histone genes H3-I1 and 
H4-I1 in various species of the ciliated protozoa Tetrahy- 
mena. This region has been previously identified as having 
less sequence similarity than either the histone H3-I1 or his- 
tone H4-I1 genes (Brunk and Sadler, 1990; Brunk et al., 
1990). When using both EP and CIustalW, EP was able to 
discover a better alignment (1 02 matched columns relative to 
91 matched columns) in only 180 generations. This differ- 
ence suggests that alignment algorithms using evolutionary 
computation are likely to outperform ClustalW when the 
similarity of the sequences is low. 

4. Discussion 
Three variables are particularly important for any multi- 

ple sequence alignment algorithm; the number of sequences, 
the average length of the sequences, and the overall similar- 
ity of the sequences. Traditional algorithms such as Clust- 
alW are known to be very successful when the number or 
average length is low and the overall similarity of the 
sequences is high. For instance, ClustalW can determine the 
optimal alignment for the sequences in data set 1 (10 very 

similar sequences of average length 21 1 nucleotides) in 27 
seconds. However, this same algorithm takes 14 hours and 3 
minutes to compute the alignment for 10 less similar 
sequences of average length 9000 nucleotides (Zhang and 
Wong, 1997). Even after using ClustalW, most biologists 
use some degree of post-processing to refine the alignment 
into something more “meaningful.” The reason for this lies 
in the limitations ClustalW poses on the type of objective 
functions that it can optimize. Clearly, an evolutionary 
approach that relaxes this limitation and allows for any arbi- 
trary user defined fitness function could be used to search the 
space of possible sequence alignments in a more efficient 
manner. 

Notredame et al. (1997) used a genetic algorithm 
(RAGA) for aligning related sequences of RNA using infor- 
mation regarding their secondary structure. Information 
about the secondary structure of one of the two sequences 
was used to predict the position of the structural elements in 
the second sequence. RAGA was an extension of an earlier 
algorithm (SAGA) for multiple sequence alignment using 
genetic algorithms (Notredame and Higgins, 1996). The 
algorithm for RNA structural alignment was also made par- 
allel (PRAGA) (Notredame et al., 1997). Although these 
efforts are a powerful step in the right direction, RAGA and 
PRAGA make use of structural information to assist in their 
alignment. With a very limited number of RNA structures 
determined by X-ray crystallography or NMR, structural 
information is usually predicted through the use of energy 
minimization algorithms. Energy minimization algorithms 
have been determined to predict incorrect structures in some 
cases (Fields and Gutell, 1996) and therefore, alignment on 
the basis of structural details is only as valid as the pre-deter- 
mination of the structure using thermodynamics. The 
method presented in this paper is useful when structural 
information is not available or is not desired. 

Zhang and Wong (1 997) developed a genetic algorithm 
approach to multiple sequence alignment. Scoring of the 
alignment was based on the number of fully matched col- 
umns. Their method was directly compared with ClustalW. 
Their approach focused on the identification of matched col- 
umns and mutation between columns that were found by a 
pre-alignment tool. The method works well when the opti- 
mal alignment that is being searched for contains a large 
number of fully matched columns i.e., when there is a high 
similarity between the sequences. However, few fully 
matched columns will be found in sequences of low similar- 
ity, making this algorithm useful only for very similar 
sequences. Initialization by pre-alignment for matched col- 
umn discovery places the search close to local optima on the 
response surface. Evolutionary computation will easily dis- 
cover the nearest local optima, but must be able to escape the 
local optima in order to discover the global optima. In the 
experiments described by Zhang and Wong (1 997), the 
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Table 1: Data sets used for testing the proposed evolutionary programming procedure for multiple sequence 
alignment. Information regarding the data sets is provided in the Appendix. 

Percentage of Number of Mean Sequence matched col- 
Number Length in nucle- umns based on 

otides the best align- 
Columns Matched in Data Set of 
C1ustalW 
solution 

Sequences (min,max) ment using 
ClustalW 

1.S1 (Zhang, 1997) 10 211.9(211,212) 93.39 198 
2.16s rRNA 8 457.0 (457,457) 98.25 449 
3. Histone H3 21 122.0 (122, 122) 89.34 109 

4’ Histone H3-H4 21 333.4 (322,346) 27.4 1 91 Intergenic Region 

Number of 

tions 

Number of 

Columns in 
EP solution 

Matched Genera- EP Score 

198 200 4082 
449 400 1233 
109 I60 4766 

102 180 7033 

genetic algorithm approach was terminated after 10 genera- 
tions of stagnation. It is likely that with decreasing sequence 
similarity, 10 generations may not be sufficient to escape 
multiple local optima required to discover the global optimal 
alignment. A special mutation operator was developed to 
make drastic changes to the alignment and force solutions 
out of local optima. 

Gonzalez et al. (1998) generated a simulation of multiple 
protein sequence alignment using genetic algorithms. The 
three example data sets used in their analysis contained short 
sequences (30 nucleotides or less) and a small number of 
sequences (three sequences). The results were subjectively 
compared to traditional algorithms, however it is expected 
that ClustalW could have been easily used on such a small 
data set with equal performance in equal or less time. The 
true benefits of any evolutionary computation approach to 
the multiple sequence alignment problem will be to succeed 
where other algorithms fail, rather than to equal the perfor- 
mance in areas where traditional algorithms are known to 
succeed. For short sequences that are few in number, Clust- 
alW already presents a method that is widely appreciated for 
solving the problem in a rapid fashion. 

Anabarasu et al. (1998) generated a multiple sequence 
alignment algorithm using a parallel genetic algorithm. This 
algorithm was tested on 4 protein sequence data sets of 
lengths between length 48 and 292 nucleotides. The number 
of sequences ranged from 4 to 15. Although able to generate 
roughly similar or even lower scores than ClustalW, the 
operational time of their approach was longer than ClustalW 
by two orders of magnitude. The similarity of the sequences 
in the data sets was not reported and could not be determined 
from the data provided in the paper. 

All previous attempts at multiple sequence alignment 
using evolutionary computation have focused on two central 
themes; a genetic algorithm approach with emphasis on 
crossover including, to a lesser degree, special mutation 
operators, and comparison of this approach to ClustalW on 

small sequence sets with high similarity. However, any 
sequence alignment algorithm must trade off computation 
speed for alignment accuracy, especially when there is a IOW 
similarity between the sequences that are to be aligned. A 
poor alignment that is generated in a rapid fashion is still a 
poor alignment. If there is any part of the multiple sequence 
alignment problem where evolutionary computation can be 
useful, it is not in the alignment of small sets of very similar 
sequences but in large sets of sequences with low similarity. 
It is these types of alignments that have been missing from 
the literature to date. Generally, it is also difficult to directly 
compare the outputs of ClustalW and the various EC 
approaches because of their different scoring schemes. One 
comparative measure of success that can be used is the num- 
ber of matches and the number of fully matched columns 
(i.e., columns with only A or T or G or C) in the alignment, 
as has been used in this study. 

Future experiments will use additional data sets (Briffeuil 
et al., 1998) to compare the power and confidence against 
multiple sequence alignment servers on the internet. A 
revised nucleotide scoring matrix (or PAM matrix in the case 
of protein sequences) will be incorporated to make the align- 
ment score more realistic rather than rely solely on the num- 
ber of matches. At present, the EP approach treats all 
mismatches with equal penalty. However, the frequency of 
transitions or transversions may not be equal in the 
sequences that are being compared. It is hopeful that this 
altered scoring scheme will allow even better alignments to 
be discovered. 
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Appendix 
Data Set 1 : DNA, S 1 (Zhang and Wong, 1997) 

HCV211 A 10 HCV2L3A5 HCV2L3A7 
HCV2L3A9 HCV2L3B1 HCV2L3B2 
HCV2L3C1 HCV2L3C8 HCV2L3D4 
HCV2L3E6 

Data Set 2: RNA, 16s  rRNA (GenBank) 

AF095268 AF095267 AF095266 
AB023287 AB023286 AB023285 
AB023284 AB023283 AB023279 
AB023278 AB023276 

Data Set 3: DNA, Histone H3 (Brunk et al., 1990) 

TPAHI SIN TNIHISIN TNHISIN 
TMIHISIN TMHISIN TLHISIN 
THHISIN TFHISIN TEHISIN 
TCUHISIN TCHISIN TCAHISIN 
TBHISIN TAUHISIN TAHISIN 
TTHISIN TSHISIN TRHISIN 
TPYHISIN TPIHISIN TPHISIN 
The first 122 symbols fiom each of the above sequences 
were used for alignment. 

Data Set 4: DNA, Histone H3-11, Histone H4-I1 inter- 
genic region (Brunk et al., 1990). The sequences were the 
same as those in Data Set 3. The intergenic sequence was 
extracted starting at 123rd symbol. The length of the 
extracted intergenic sequences were 329,328, 332, 337,344, 
336, 334, 325, 335, 342, 334, 333, 335, 330, 333, 324, 334, 
334,334,333,348, respectively. 
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